
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB013480

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 01 AUG 1975. Other
requests shall be referred to Ballistic Missile
Defense Advanced Technology Center, PO Box
1500, Huntsville, AL 35807.

usa bmdatc ltr, 6 may 1977

TH1S REPORT HAS BEEN DELimTED

UNDER 00. O.RECT.VE 5200.20 *»

N0 «STR.CTIONS ARE -«POSEO ^

HS USE AMD DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

-'-v."

■■•■^■;,:w*,,»v .,,,,

,.:-^.«-WKs,^r:V,,.<rr^^^w'---'--:;\-i:":.v-'----A ,? ■•'•■■»;/;;:: ■■ ■.'.-■■".■-

ADB0i348O
273326921024

SOFTWARE REQUIREMENTS
ENGINEERING METHODOLOGY

/

CDRL con
1 SEPTEMBER 1976

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

TRW
DEFENSE AND SPACE SYSTEMS GROUP

HUNTSVILE, ALABAMA

■■.-^'■■■■.'■»i.. —»-

-^.^,-*,,,,^ ■ "■":"■

TRW

SN27332.000
1780.1.76-5765
1 September 1976

Director, Ballistic Missile Defense
Advdnced Technology Center

P. 0. Box 1500
Huntsville, Alabama 35807

Attention: ATC-P

Subject: Contract DASG60-75-C-0022
CDRL Sequence No. COll
Software Requirements Engineering Methodology

In accordance with the requirements of the subject CDRL, two (2) copies of
tne Software Requirementf, Engineering Methodology are herewith submitted.

uiitribution of this report Is shown below.

TRW SYSTEMS, INC.

-tv-^-G. Hz 'irujlch
/ Contracts Specialist
/ Mail Station R2/1054

TRW Defense and Space Systems Group

Enclosures: As stated

cc: BMDP0, Arlington, VA
ATTN: DACS-BMT. Dr. R. Merwin (1)

DACS-BMS (1)

BMDSC, Huntsville, AL
ATTN: BMDSC-C (w/o end.)

DDC, Alexandria, VA (2)

Aeronutronic Ford, Willow Grove, PA (1)

SDC, Huntsville, AL
ATTN: Mr. Robert Covelli (1)

Library (10)

Texas Instruments, Huntsville, AL
ATTH: Dr. R. Bates (1)

Auburn University, Auburn, AL
ATTN: Dr. H. Troy Nagle (1)

CSC. Huntsville, AL
ATTN: Mr. P. C. Belford (1)

GRC, Santa Barbara, CA
ATTN: Dr. Charles Perkins (1)

Loglcon, San Pedro, CA
ATTN: Wm. C. Nlelson (1)

SAI, Huntsville, AL
ATTN: Mr. Robert Curry (1)

Univ. of Calif., Berkley, CA
ATTN: Dr. C. V. Ramamoorthy (1)

AFPR0-TRW (w/o end .)

svsn MS v.noup 01 TRW INC.

A*Mr SURPORJ FACIUT* • 7102 COVEHNORS DHIVt. WCSl, HUNTSVILLC. ALABAMA 35805 (205) 837 2400

•^p. .^»»«»iiiB» -wr tm 111"!1 «■f^-^^ UWWIi,. ,l.-ll', „f ...Jl. ■ — rv "- ■". »mm
'

■R

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOEfWI.«. Dmlm Knfn.i)

20. (Continued)

The methodology systematically develops the specification from source
documentation at the system level, documenting omissions and errors of
the source materials In the process. The produced requirements are
provably consistent, and may be validated against system objectives
through the generated simulation. The entire process is subject to
systematic management through definable and verifiable milestones
supported by REVS.

UNCLASSIFIED

-w-

•ICUNITV CLASIiriCATlON OF THIS PACCfWlMn DM* Cnfnä)

■*- i—-— -"■ " '-■l ■

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fWhen Dmlm Enltrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

CDRl/COn

2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Sublltt»)

/:
Software Requirements Engineering Methodelogy/l

5. TVPF OF qEPOHT a PFiqnn COVERED

/^Technical /eP*?^/^

8: CONTRACT OR GRANT NUMBERC«.)

OiM. D./{ichter, J. D.'Mason.let al

9. PERFORMING ORGANIZATION NAME *1s|D AODWES^ ^ *! Tfl ^/t "\

TRW Defense and Space Systems Group-—
7702 Governors Drive, West
Huntsville, Alabama 35805

DASG6^-75-0-0022 J

\0. PROGRAM ELEMENT. PROJECT, TASK
\ AREA 4 WORK UNIT NUMBERS

6.33 ■^ (y-^S/» g
II. CONTROLLING OFFICE NAME AND ADCiRESS

Ballistic Missile Defense Advanced Technology
Center, P. 0. Box 1500, Huntsville, AL 35807

ATTN: ATC-P
14. MONITORING AGENCY NAME ft AOORKÜf/f dlllarmat from Controlllnt Olllce) IS. SECURITY CLASS, (ol thlt report;

Unclassified
IS«. OECLASSIFICATION/DOWNGRADING

SCHEDULE

I«. DISTRIBUTION STATEMENT (of ihlm Rtport)

Distribution limited to U. S. Government Agencies only; test and evaluation,
1 August 1975. Other requests for this document must be referred to
Ballistic Missile Defense Advanced Technology Center, P. 0. Box 1500,
Huntsville, AL 35807. ATTN: ATC-P

17. DISTRIBUTION STATEMENT (ol (ha «ba(rac(«Warad In Block 20, It dllterenl Iroai Report)

U. SUPPLEUtNTARY NOTES

It. KEY WORDS ft onimuc on rrvaraa a/da II nacaaaary and Idtnllly by block number)

\

^T

Software
Software Specification
Software Requirements
Software Development

ABSTRACT (Contlnum an ravcraa mldm It nacaaaary and Idmnllty by block numbmr)

A methodology is presented for the development and management of software
specifications. The technique is built upon a language (RSL) readable both by
a computer and by man, and a set of tools termed collectively the Requirements
Engineering and Validation System (REVS). The tools provided for retention of
all requirements In a relational data base from which documentation, consis-
tency analyses, and simulations may be constructed automatically..

X
DD FORM

I JAM 73 1473 EDITION OF I NOV 6» IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS I PACE MEM 53« «n nfrmä) X-

- ■i—-'""»MpH^

«■•.■ ;,,.«,,. ^«t^^tin»^«!^».^,,^»«^»^«,^^^^ ,,„ ,„,,,., ,„, „,-f,:,„:VvjJ,j:,„,, ; ,.,„,,, si^'fr' ^*T'K» «■•"""

27332-6921-024

SOFTWARE REQUIREMENTS
ENGINEERING METHODOLOGY

CDRL COll 1 SEPTEMBER 1976

DISTRIBUTION LIMITED TO U. S. GOVERNMENT AGENCIES ONLY;
TEST AND EVALUATION. 1 AUG 75. OTHER REQUESTS FOR THIS
DOCUMENT MUST BE REFERRED TO BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER. ATTN; ATC-P. P.O. BOX 1500,
HUNTSVILLE. ALABAMA 35807.

THE FINDINGS OF THIS REPORT ARE
NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION.

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

TRW
DEFENSE AND SPACE SYSTEMS GROUP

Huntsvilie, Alabama

■

IP
SOFTWARE REQUIREMENTS

ENGINEERING METHODOLOGY

273J2-6921-024

CDRL con 1 SEPTEMBER 1976

Principal Authors:

M. D. Richtar
J. D. Mason

Technical
Management

Principal Contributors

M. W. Al ford
I. F. Burns
H. A. Helton
J. T. Lawson

Approved By:

^
L. R. Marker, Manager
Software Requirements
Engineering Program

Methodology Research
and Development

ames E. Long, Manner
Huntsville Facility

Prepared For

BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER

DASG60-75-C-0022

m WKWw.
DEFENSE AND SPACE SYSTEMS GROUP

Huntsville, Alabama

iii

'**"-'*-

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION 1-1

1.1 BACKGROUND 1-1

1.2 SCOPE AND CONTENT OF THIS MANUAL 1-3

1.3 OVERVIEW OF SREM 1-4

1.3.1 The Requirements Statement Language (RSL) . . 1-5
1.3.2 The Requirements Engineering and Validation

System (REVS) 1-5
1.3.3 The Engineering Methodology 1-7
1.3.4 Specification Management 1-B

1.4 APPLICABILITY 1-8

1.5 TERMINOLOGY 1-8

PART I - TECHNICAL APPROACH

2.0 SREM OVERVIEW 2-1

2.1 THE TRACK LOOP SYSTEM EXAMPLE 2-3

2.1.1 Preliminary Ballistic Missile Defense System. 2-5
2.1.2 TLS Requirements 2-5

2.2 SUMMARY OF APPENDICES 2-5

3.0 FUNCTIONAL REQUIREMENTS 3-1

3.1 PHASE 1 - DEFINITION OF SUBSYSTEM ELEMENTS 3-3

3.1.1 Initial Inputs 3-4
3.1.2 Interface Definition 3-5
3.1.3 Message Definition 3-6
3.1.4 The Interface Data Hierarchy 3-14
3.1.5 Problems of Definition 3-16
3.1.6 R_NET Definition 3-17
3.1.7 Entity Definition 3-25
3.1.8 The Entity Data Hierarchy 3-27
3.1.9 Independent FILEs 3-30
3.1.10 Summary of Phase 1 3-33

3.2 PHASE 2 - EVALUATION OF THE KERNEL 3-33

3.2.1 Data Naming Conventions 3-34
3.2.2 Structural Data Definitions 3-35
3.2.3 Entering R_NETs in the ASSM 3-36
3.2.4 The STRUCTURE OF an R NET 3-38
3.2.5 Checking the Kernel with the Aid of RADX. . . 3-39
3.2.6 Summary of Phase 2 3-41

Section

TABLE OF CONTENTS (Continued)

Title Page

.

4.0

5.0

6.0

3.3 PHASE 3 - COMPLETION OF THE FUNCTIONAL DEFINITION. . 3-42

3.3.1 Data Transactions 3-43
3.3.2 RADX Evaluation of Data Transactions 3-45
3.3.3 Hierarchy Transitions 3-47
3.3.4 Further Data Definition 3-49
3.3.5 Evaluation of the ASSM Using RADX 3-53
3.3.6 Summary of Phase 3 3-59

3.4 PHASE 4 - DEVELOPMENT OF FUNCTIONAL MODELS 3-60

3.4.1 Betas 3-60
3.4.2 Local Date 3-61

3.5 TRACEABILITY 3-63

3.5.1 Originating Requirements 3-63
3.5.2 References 3-63
3.5.3 Decisions 3-64
3.5.4 Relating to Sources 3-64

3.6 INFORMATIVE MATERIAL 3-65

3.6.1 Description 3-65
3.6.2 Synonym 3-66
3.6.3 Authorship 3-66
3.6.4 Complementary Relationships 3-66
3.6.5 Structural References 3-66

3.7 ANALYTIC MODELS. 3-67

PERFORMANCE REQUIREMENTS 4-1

4.1 LOCATE TEST POINTS 4-5

4.2 DEFINE DATA AND TESTS 4-7

4.3 DEFINE SUPPLEMENTAL VALIDATION POINTS AND DATA . . . 4-13

PART II - MANAGEMENT APPROACH

INTRODUCTION 5-1

DEFINING MEASURABLE MILESTONES 6-1

6.1 SOFTWARE REQUIREMENTS DEVELOPMENT 6-3

6.2 SOFTWARE REQUIREMENTS VALIDATION 6-7

6.3 SUMMARY 6-8

€S

vi

l-
•m

-v-*^..

TABLE OF CONTENTS (Continued)

Section Title Page

7.0 PLANNING 7-1

7.1 PRELIMINARY GUIDELINES 7-1

7.2 COST MODEL 7-2

7.3 SCHEDULING 7-3

8.0 MANAGEMENT CONTROL 8-1

8.1 CONTROL MECHANISMS 8-1

8.2 CHANGE CONTROL . 8-4

8.3 SELLING THE SOFTWARE REQUIREMENTS 8-7

9.0 CONCLUSIONS 9-1

APPENDIX A - RSL TERMINOLOGY A-l

APPENDIX B - DRAFT REPRESENTATION OF THE KERNEL OF TLS B-l

APPENDIX C - TLS KERNEL C-l

APPENDIX D - TLS REQUIREMENTS NETWORKS D-l

APPENDIX E - COMPLETE TLS DATA BASE E-l

APPENDIX F - TLS SOURCE SPECIFICATIONS F-l

REFERENCES R-l

vil

LIST OF FIGURES

Figure Title Page

2-1 Track Loop System 2-4

3-1 RSL Subsystem Entries 3-7

3-2 An Elementary Interface Hierarchy 3-9

3-3 C2 Input Hierarchy 3-12

3-4 RSL Message Entries 3-13

3-5 Interface Data Hierarchy 3-15

3-6 RSL Decision Entry . 3-18

3-7 Three Asynchronous R_NETs 3-23

3-8 Entity Data Hierarchy 3-28

3-9 Entity Hierarchy 3-31

3-10 RSL Entity Entry 3-32

3-11 RSL Data Entry 3-37

3-12 RSL Initial ALPHA Entry 3-46

3-13 RSL Additional ALPHA Entry 3-48

3-14 RSL BETA Entry 3-62

4-1 Performance Requirements Statements Representation at
the Completion of SREM Step - Locate Test Points 4-8

4-2 Performance Requirements Statements Representation at
the Completion of SREM Step - Define Data and Tests . . . 4-14

6-1 Overview of SREM Activities (Development and Validation
of Functional Requirements) 6-2

6-2 Sample Activity Network for Software Requirements
Development 6-4

6-3 Sample Decisions from Track Loop 6-6

6-4 Sample Activity Network for Software Requirements
Validation 6-9

7-1 Rough Spread of Activities by Level » 7-7

7-2 Rough Spread of Manpower for Example 7-9

7-3 Sample Milestone Schedule for Small Project 7-11

7-4 Sample Milestone Schedule of Figure 7-3 With Slack Time
Added 7-12

8-1 Interests Shared by SRE 8-2

8-2 Change Flow Into Update of Baseline 8-6

IS;

mm

Table

7.1

8.1

8.2

8.3

LIST OF TABLES

Title

Definition cc Symbols Used in Cost Model

SREM Focus of Management Control on Substantive Issues.

Control Mechanisms for Major Managerial Control Issues.
Selling Software Requirements

Page

7-4

8-3

8-5

8-8

I

1.0 INTRODUCTION

»

I

1.1 BACKGROUND

The history of digital computing can be meaningfully traced for some

three decades, to the ENIAC and UNIVAC I systems of the 1940's. For the

first half of that period, limitations of computer hardware were the primary

constraint on the application of digital systems. In the past ten to fifteen

years, however, hardware technology has improved to the poir-t where software

technology has become the limiting factor. The tremendous speed and com-

putational power of modern computers has made possible very complex and

sophisticated systems. The software imbedded in such systems provides not

only the mathematical data transformations required, but also provides the

control functions of many of the system components (such as radars) and

of the system as a whole. Therefore, the software is uniquely critical to

the successful operation and performance of the system.

The need for improving the techniques of designing, building, testing,

and managing software has been well understood for several years and has

resulted in vigorous research and development within the Government, indus-

try, and the universities. This has led to the development of improved

programming languages, development support tools, and management approaches,

as well as a strong theoretical basis in such areas as queueing theory and

dynamic programming and many pragmatic development approaches such as struc-

tured programming and top down design. While significant improvements have

been obtained in the state-of-the-art in program design, implementation, and

testing, much additional research is needed and is being actively pursued —

especially in such areas as proof-of-correctness, data base design, etc.

there Is an additional phase of software development which is especially

critical: the definition and specification of the functional and performance

requirements which the software must satisfy. This phase is especially

critical due to the very high cost and schedule leverage which exists. Sim-

ple errors in the requirements, if not detected until after the software has

been built, are extremely expensive in terms of time and manpower to correct.

While it has been apparent for quite some time that the state-of-the-art in

developing requirements needed improvement, it was not possible to accurately

1-1

g»/!«^.....''!!!^«""""

"ii»iwii>iiii<i(ii'«'willh i Ti.c • •™tWMiim

AW fümD
JUMiinijimi

[llWWilljjIHIII

.. ■ .

M

identify and quantify the improvements needed until after the design imple-

mentation, and test phases became more predictable and controlled. Thus,

in the fall of 1973, BMDATC initiated the Software Requirements Engineering

Program with the objective of developing a set of tools and techniques for

defining and specifying the software requirements for ballistic missile

defense (BMD) software. The result of that research is the Software Require-

ments Engineering Methodology (SREM) which is described in this report.

The first step in developing the Software Requirements Engineering

Methodology was to determine the properties required of a specification

and of the individual requirements of which ft is composed. Returning to

first principles, we note that:

0 A specification is the set of all requirements which must
be satisfied, and the identification of the subsets which
must be met concurrently; and

t A specification is neither legally binding nor realizable
unless it is consistent with both the laws of logic and
the laws of nature.

In addition, we observe that

• A specification defines the properties required of a product
such that any delivery satisfying the specification satisfies
the objectives of the specifier.

Taken together, the above truisms lead to a set of properties which

a specification must have from a technical point of view:

• Internal Consiste icy

• Consistency with the physical universe

• Freedom from ambiguity.

Economic and management considerations lead to an additional set of

properties which a good specification must exhibit:

• Clarity

0 Minimality

t Predictability of specification development

• Controllability of software development.

•

KMMM HMRM

1-2

.■a^— , ,. —. .,,. ■< ^.~v-—-

^MM

t

:

Since freedom from ambiguity is mandatory, we naturally looked to a

machine-readable statement of the requirements. It is a known principle

of computer operation that input ambiguities can be tolerated only insofar

as they are designed into the software. Thus, by employing an unambiguous

language, and by translating and analyzing it with a program intolerant of

ambiguity, we can ensure an unambiguous statement of requirements. However,

the need for clarity of communication strongly suggests a language resembling

common speech, so that the specification can be read by managers, systems

enginetrs, and others who are not specially trained in the language.

To provide an internally consistent specification, analyses of the

requirements statements are incorporated into the system supporting the

language. These analyses include semantic and syntactic decomposition of

the individual statements, and analysis of the composite flow of data and

processing. Support of consistency with the physical universe is accomplished

by converting the specification unambiguously into a model (simulation)

which can be executed against a model of the real world.

Finally, to support control of both the specification process and

software development, a means of selective documentation and analysis of

the specification is provided. The integration of these tools with a

sound and methodical engineering and management approach provides predict-

ability in the specification process and aids in avoiding overspecification.

1.2 SCOPE AND CONTENT OF THIS MANUAL

This manual is essentially a SREM User's Guide for development of

software requirements specifications. It is not a cookbook, in that it does

not attempt the inherently impossible task of converting the genuinely

creative aspects of specification development into rote, deductive opera-

tions. However, it does define guidelines through which these creative

operations are recognized, applied and restricted to their natural roles

in the specification development process. In this manner, the scale and

range of creativity can be defined and contained, thus allowing the speci-

fication development process to be scheduled with some degree of confidence.

It should be noted that creative features remain in the methodology and as

a consequence the major development effort must be conducted by experienced,

knowledgable engineers. However, SREM has been structured in a manner such

1-3

■

rninir
■MHBMHiMMnnnHMMBHHBni

■

that many elements of specification development can be identified and

isolated to permit junior engineering personnel to perform the details

of specification statement definition and documentation preparation.

This manual is organized into two parts: Part I deals with the

technical aspects of software requirements engineering. The methodology

is described in detail, step-by-step, in the context of an example begin-

ning in Section 2. Part II discusses the management of the specification

development process with emphasis on how the specific features of SREM and

Its tools can be used to advantage in the management of the activities.

This document is intended as a User's Guide for the requirements

engineer. It describes the steps of the Software Requirements Engineering

Methodology and defines the techniques, procedures and tools to be used

during application of the methodology steps to the development of a Process

Performance Requirement Specification. The language (RSL) and tools which

form the Requirements Engineering and Validation System (REVS) are described

in Reference [1] and should be familiar to the reader prior to attempting

to apply the methodology.

1.3 OVERVIEW OF SREM

The desired properties of a requirements specification discussed

above are rather general in nature. These can be precisely defined In

terms of nine characteristics of a good specification:

• Communicability • Traceability

• Testability t Correctness.

• Consistency • Design Freedom

• Completeness • Flexibility (Changeability)

t Feasi bility

These characteristics, which are self-explanatory, formed the specific

objectives which Influenced every aspect of the development of SREM. They

are repeated here to establish the contex of our objectives. Justification

of the methodology presented here against these goals Is contained In [2]

and will not be repeated here.
9.

1-4

'iBiwi'riiiiwwiiiWiMiimmiimmmDHB , _x.-

■

'<

The reader who wishes to learn how to write software requirements

using the SREM techniques should first study the language and support

software capabilities described in the REVS Users Manual [1]. However,

a general understanding can be obtained from this manual alone. To

facilitate this, a brief overview of RSL and REVS is provided here.

i.3.1 The Requirements Statement Language (RSL)

RSL is an extensible language which means that certain primitive

concepts are built in and the user can use these to define more complex

language concepts. The primitives are elements, attributes, relationships,

and structures. From these, we have defined a nucleus of concepts which

to date have proven sufficient. Future users of the language can add to

these by means of the extension features as required. These concepts are

introduced as they are used in this manual, and are presented in full in

Appendix A.

The Requirements Statement Language is a user-oriented mechanism for

specifying requirements. It is oriented heavily toward colloquial English,

and uses nouns for elements and attributes and transitive verbs for rela-

tionships; a complementary relationship uses the passive form of the verb.

Both syntax and semantics echo English usage, so that many simple RSL

sentences may be read as English with the same meaning. However, the

precision of RSL, enforced through machine translation, is not typical

of colloquial speech; as a result, most complex RSL sentences are a some-

what stylized form of English.

1.3.2 The Requirements Engineering and Validation System (REVS)

REVS is an integrated set of tools used to support the definition,

analysis, simulation, and documentation of software requirements. A key

concept of REVS is that all requirements are translated into a central

data base called the Abstract System Semantic Model (ASSM). The RSL

statements themselves are not stored in the ASSM. Instead, they are

translated into representations of the information content of the require-

ments statements. This provides an efficient and flexible means of main-

taining a large software specification in a relatively small computer

data base.

1-5

''ijMmM

The ASSM is a relatioral data base providing a common source for all

requirements analysis and modelling and for documentation. The commonality

of all data ensures that any combination of extractions from the ASSM at

any time (e.g., a document and a simulation) will be mutually consistent.

That consistency is essential to asserting that the requirements modelled

in validation of the specification are equivalent in every sense to those

written in the specification.

REVS provides two mechanisms for entry of data into the ASSM, trans-

lation and interactive graphics, and a powerful set of tools for analysis

termed collectively Requirer'nts Analysis and Data Extraction (RADX).

Translation is the process of converting RSL statements into the ASSM

information, where the source of the statements may be cards, card images

on tape, or keyboard entry from a terminal. Interactive graphics (RNETGEN)

Is a software package executing in conjunction with the the Anagraph color

graphics console to provide ASSM entry and illustrative documentation.

It permits entry of structures and referenced elements in a manner parallel

with the translator, and in fact may be used in conjunction with translation

in an operational environment. Significantly, RNETGEN allows the user to

attribute graphical information to his structure, both for multicolor

display on the Anagraph and for documentation via CALCOMP.

Information held in the ASSM may be selected and output using RADX.

That tool is responsive to user direction In selecting either a recreation

of the information translated Into the ASSM, or the formatted abstraction

of that information in a user-defined HIERARCHY. The combination of these

features allows complex selections to be effected, so that all Information

needed for documentation and much that is essential to configuration manage-

ment can be abstracted from the system without the encumberance of irrele-

vant data. Since all data abstractions are drawn from a common ASSM (and

since that data base is confirmably consistent within itself), even redun-

dant assertions in data extractions are absolutely consistent with one

another.

Both static and dynamic analysis are provided by REVS in order to

determine the Internal consistency of the ASSM and Its validity with

respect to the laws of nature. Static analysis is performed in RADX

which examines the data connectivity through the requirements to determine t
1-6

■

i

§

that the laws of logic and the conventions of the language are fully

satisfied throughout. Some forms of completeness testing are also accom-

plished, determining, for example, that constants are provided as required;

the scope of completeness testing is largely at the discretion of the user,

since he may define extensive static analyses through RADX commands to

supplement those inherent in the system.

No amount of static testing can fully validate a set of requirements.

To do so, the system they represent must be exercised against a model of

the environment in which the system is to execute. Such simulations are

provided by an automated simulation builder (SIMGEN), and a software

package supporting its execution (SIMXQT). Two different levels of simu-

lation are supported: analytic, in which high-fidelity models of the

environment and explicit performance measures are provided, and functional,

in which the connectivity of the system is validated with non-analytic models.

1.3.3 The Engineering Methodology

Historically, the methods for developing a software specification

have been as numerous as the developers of such documents. In fact, few

cases can be cited in which any formal methodology could be quoted. Until

the specification appeared (often after tens or hundreds of man-years of

effort), nothing was in hand to show that it would be generated. In

addition, it has frequently been true that the quality of the specification

even with respect to elementary consistency from one requirement to another,

could be verified only very late in software development. Since the prob-

lems were discovered only when the cost of correction was prohibitive, the

requirements were frequently changed, degrading system performance in

order to have some workable product.

The methodology developed within SREP is not only formal, in that it

provides an explicit sequence of steps leading to the specification, but

also manageable, in that it illuminates multiple phases for management

review and analysis. Along the way, it supports early detection of high-

level anomalies, since it works from the highest levels of software defi-

nition (processing and data flows) to the most detailed (analytic models

and d?ta content) in a systematic manner. A key feature of SREM is that

the processing functions and data communications are considered in parallel,

1-7

IK-
m^%i.'0!'^^^r.,-v^rrT^

rather than have either follow the other. As a result, the connectivity

of the system is always complete, and it becomes possible to partition the

requirements effort among several groups early in the process without

risking divergence, omissions, or inconsistencies.

1.3.4 Specification Management

The management of a specification developed under SREM benefits

most from the common source in the ASSM for all representations of the

requirements. Thus, the simulation of the specification and the documen-

tation of its requirements must be consistent at any time, since both

have a single source of data which generate each without human inter-

vention. In addition to a common data base, the methodology itself

supports an orderly development which can be annotated with milestones,

recorded on PERT charts, and otherwise controlled with the tools of the

last several decades to provide predictability and control. This is not

to suggest that the creativity of the specification process can either be

scheduled or bypassed; it is still needed, but the methodology isolates

it into segments with high visibility, supporting management cognizance

of its progress and impact.

1.4 APPLICABILITY

These tools and techniques have been developed to address the needs

of BMD software development. With perhaps minor exceptions, however,

SREM is directly applicable to the specification of the requirements for

any central software process for a large real-time system. In fact,

since the methodology is inherently and deliberately computer Independent,

the techniques are not limited strictly to software in the form of com-

puter programs. The requirements for any process composed of logical

decisions and computations performed on data can be expressed via SREM —

regardless of whether the end product will be software, hardware, firm-

ware, or some combination of the^».

1.5 TERMINOLOGY

At the risk of introducing confusion, we have introduced soma non-

standard terminology. This has been done for two purposes: (1) to emphasize

the different Interpretations given to some concepts, and (2) to emphasize

1-8

0

mmmmmm mwinwi
■ --*»■ "t mi mil rf*'—

■;» ^^.-...-w»....- ■!■—!■»■■■

:^P'

the generality of the methodology application. An example of the first

is the use of the term ALPHA for a processing step. The more common term

"function" would be misleading to some because there is, in fact, a wide

variety of common interpretations of "function". To avoid misunderstanding,

we use the new, unfamiliar term in order to emphasize its specific meaning.

An example of the second is the name applied to the resulting requirements

specification which we call the Process Performance Requirements (PPR).

No docunientation system currently in use recognizes a document called a

PPR. Here, our point is that an^ software requirements specification,

whether called a B-5 (in MIL-STD 490) or something else in some other

system, must contain a certain set of information. That set of information

is what we call a PPR.

If this use of new terminology causes confusion, we apologize.

However, once the techniques are understood, they can be applied to any

program and the terminology adapted to the needs of the user.

1-9

PART II - TECHNICAL APPROACH

1

(

2.0 SREM OVERVIEW

The Software Requirements Engineering Methodology has been developed

during the past several years in conjunction witn development of the

Requirements Engineering and Validation System and as a consequence has

resulted in a clean, clear and comprehensible compatibility between the

methodology and the instruments it uses to formulate and test a require-

ments specification. While REVS embodies the language and tools required

for orderly development of process requirements specifications, SREM

defines the techniques and procedures within which the tools and sound

engineering and management practices are comlineü to generate a specifi-

cation containing the desired properties under a controlled environment.

SREM encompasses four major areas of engineering activity that begin

with receipt of the set of information which defines the system level

requirements on the Data Processing Subsystem. We call this set the

Data Processing System Performance Requirements Specification (DPSPR).

The DPSPR as used here includes the Data Processing System Interface

Requirements Specifications and any external subsystem Performance Require-

ments Specifications which influence the definition of the Process Per-

formance Requirements. Using these source documents as a stimulus, the

requirements engineer becomes involved in the four major engineering

activities defined by SREM to develop the Process Performance Reciuire-

ments Specification. These engineering activities are:

Identification, definition and development of the
functional requirements.

Identification, definition and development of the performance
requirements.

Development of the Process Performance Requirements Speci-
fication and

Development of the process design feasibility demonstrations
which are generally conducted sequentially and separately.

ARECKDINS FASS
-- ■■^'^t-««*^*^»^««,«*!^!!« m*w*mm*m,*■,■■-.■..*.

L

2-1
■-■m<*>*mm!m.

NOT iwmt

The inherently sequential nature of the steps of the methodology

appeared at first to make incremental specification of software awkward.

Experience on many programs, notably Systems Technology Program, has made

it clear that the new technology should assume that knowledge of require-

ments will increase continuously throughout the development of the software

specification, rather tha^i be complete when software requirements are first

initiated. Thus, the tools and methodology of SREP were developed to

allow for incremental development of the specification. Specific features,

such as VERSION and the qualified inclusion of R_NETs in a simulation

provide the capability either for defining segments of the software require-

ments at a time, or for augmenting a full subsystem with additional func-

tions. The consistency and integrity enforced by the system are fundamental

to success in incremental specification. They ensure that:

• Portions of the system specified later than some segments
will be consistent since their connectivity with the early
segments was defined at the highest levels; and

t Any extension of trie system will be compatible with prior
specification, since any inconsistency would preclude
entering the extension into the ASSM.

During each activity of JREM the features of REVS are utilized to

control, monitor, test and maintain the evolving collection of requirements

statements. The functional requirements are defined in RSL statements and

catalogued by REVS in the ASSM through the TRANSLATOR segment. The accuracy

and correctness of these RSL statements is verified by the Static Analyzer

portion of the RADX segment of REVS. Continuity and completeness of these

RSL statements is analyzed through the SIMGEN and simulation execution

segments of REVS using algorithms for each functional requirement repre-

sented as executable PASCAL procedures implemented as BETA models. Next,

the performance requirements are defined in RSL statements and catalogued

by REVS in the ASSM through the TRANSLATOR and attached to the functional

requirements each CONSTRAINS. The accuracy and correctness of these RSL

statements is again verified by the Static Analyzer portion of the RADX

segment of REVS. Continuity and completeness of these RSL statements is

analyzed through the SIMGEN and simulation execution segments of REVS

using algorithms for each functional requirements, represented as executable

PASCAL procedures implemented as GAMMA models. Validation of the func-

.

§

2-2

mm

nmm

•

tional and performance requirements testability is confirmed by REVS through

the Post-Processing Analyzer using executable PASCAL procedures implemented

as EXTRACTOR and TEST models. In this way, the existence of a feasible

design solution for the collection of functional and performance require-

ments statements is confirmed by REVS through use of candidate algorithms

used as the GAMMA models, and a model of the system environment and threat

(SETS). The models are executed against one another with a variety of

scenarios to demonstrate the existence of a solution to the requirements

statement in the AS5M. Finally, data collected through RADX are formatUJ

and published as a Process Performance Requirements Specification.

The preceding information has been provided to introduce and orient

the reader to the global view of SREM and the REVS instruments used in the

methodology to create a PPR, and to validate it through automated simulation.

The detailed description of the SREM technique of specifying software

functional and performance requirements is presented in Sections 3 and 4.

The methodology is described in the context of an example which is worked

out to the degree necessary to illustrate the method. The example is a

hypothetical system called Track Loop System (TLS). TLS is representative

of the kind and complexity of real BMD systems, and yet is simple enough

to serve as a comprehend!ble example. A complete DPSPR (including the

interface specifications) for TLS is provided as Appendix F. The system

is summarized below.

2.1 THE TRACK LOOP SYSTEM EXAMPLE

The Track Loop System (TLS) is a subset of a Preliminary Ballistic

Missile Defense System that is capable of nearly autonomous execution in

response to external stimuli. It is the simplest known subsystem with

properties of interest for software definition, and it is one which has

been studied extensively, both In the academic literature and in such

practical programs as Site Defense. Therefore, it has been selected as

the testbed for supporting experimentation in development of the methodology

for software requirements. A pictorial representation of the TLS is pro-

vided In Figure 2-1.

2-3

äamm

I__
MM PROCESSING

 • —- , Tyt* LOOP SYSTEM

::

"*"* 2-' Track Loop s.sten,

o
2-4

■

i 2.1.1 Preliminary Ballistic Missile Defense System

A Preliminary Ballistic Missile Defense System (PBMDS) has been

postulated as an environment in which the TLS would execute. It is a

generalized representative of the class of systems currently in develop-

ment, and is particularized for the TLS through representative but non-

real specifications where required. In the Conduct Engagement mode, an

object entering the search region will be detected and designated, tracked,

discriminated, and engaged (as required) in defense of the ground facilities.

Those functions are implemented through the Data Processing System (DPS),

a radar or other sensor, and a means of neutralizing hostile objects. For

the purpose of the TLS, only the radar need be defined in detail; other

system elements are identified only to the extent that they impact DPS

requirements.

C

2.1.2 TLS Requirements

The TLS is required to perform five system level functions: 1) system

initialization and engagement initiation, 2) engagement termination, 3) tar-

get tracking, 4) control of system resources and 5) recording of data during

the engagement. The system includes: the DPS, the Radar and the recording

media and directly interfaces with the external environment through commu-

nications and control (C).
o

In general, the functions of TLS are initiated by messages from C ,

however, track maintenance and certain control functions are autonomous.
2

The engagement is initiated and terminated by C messages; during engagement,

radar data are reported periodically autonomously. When an image is handed
2

over to TLS through C , it is tracked without further direction, until it

is dropped either by command or by determination within the DPS. This

configuration thus demonstrates both exogenous and endogenous process

excitation, and in other ways provides a microcosm of a BMD process.

t

2.2 SUMMARY OF APPENDICES

The Appendices provide a summary of the Requirements Statement

Language and a complete development of the TLS requirements statements,

A complete description of RSL is provided in the REVS Users Manual

(Reference []]).

2-5

I

mmm

■ - ■

Appendix A simimarlzes the RSL Terminology by providing a copy of

the RSL nucleus which defines each element of the language and an illus-

tration of the symbology. Appendix B contains the set of hand-drawn

representations of TLS requirements which correspond to the results ob-

tained from application of the methodology defined in Section 3.1. Appen-

dix C represents the TLS kernel which contains the flow and data hierarchies

developed as a result of the methodology defined in Section 3.2. Appendix

D presents the set of R_NETs und the SUBNET produced by the Calcomp capa-

bility of the interactive graphics segment of REVS. Appendix F represents

the complete TLS Data Base maintained in the ASSM as extracted by the RADX

segment of REVS. Appendix F contains the TLS source sporifications from

which the TLS requirements were developed.

Appendices C through E have been produced by REVS from the ASSM in

much the same manner that the information content of a software specifica-

tion would be developed. Editing of this information Into a specification

document would be adapted to the particular needs of a specific program.

A sample PPR specification was produced in Reference [2] and the review It

elicited has underscored the need for adaptation of the extracted infor-

rnatlon to the specifics of an application. Therefore, neither REVS nor

SREM Is designed to produce a specific specification format. This simple

final step is left to the discretion of the user.

2-6

3.0 FUNCTIONAL REQUIPIMENTS

It i; possible and practical to view a software requirement as de-

fining either what must be accomplished or how well it must be done. The

former is termed a "functional requirement", since it specifies data process-

ing functions; the latter is termed a "performance requirement" since it

constrains the quality of performance of the function in the system. In

another sense, it is useful to look upon the functional requirement as

defining the required output in terms of the available inputs. In a sir"p1c

case, a program might be named SUMMER and have a functional requirement of

generating the sum of a sequence of input numbers (X.). Defining the output

after i inputs to be Y., trie performance requirement might be that (Yi+i -

Y.) be within E of X.+1.

Note that while the functional requirement specifies what is to be done,

and the performance requirement constrains how well it must be accomplished,

the means of accomplishment is left to process design; since the means of

implementation is not specified, the requirements are said to be design-free.

The form of representation of functional requirements has evolved in

recent years, end has culminated in Requirements Networks (R-Nets). Origi-

nally, verbal descriptions of functions were attempted, but the verbiage was

found to be cumbersome and ambiguous. Later, througn Engagement Logic and

Functional Flow Block Diagrams (FFBD's), diagrams replaced many words (the

pictures being worth thousands of words apiece). Unfortunately, much of the

ambiguity was retained. Notably, it was difficult in practice to trace re-

quired processing paths; data definitions were incomplete; and the mechanism

did not lend itself to consistency or completeness analysis.

To avoid the problem of recognizing processing paths, a thread de-

scription was attempted; unfortunately, the number of threads in a real

system proved so large that the (essentially one-dimensional) representa-

tion was almost as hard to use as English text. Conversion to thread trees

somewhat reduced the magnitude of the thread problem, but left the other

difficulties of undesired specificity (in AND branches), ambiguity (espe-

cially in data), and awkwardness for analysis.

3-1

-'

The properties preserved in defining R-Nets were:

• graphic representation of functional requirements;

• path orientation for specification of threads;

• design (implementation) independence.

In addition, the use of R-Nets permitted the addition of the following

properties:

• unambiguous statement;

• analyzable models;

• explicit data specification.

In effect, those six properties became the top-level specification of the

tools and methodology of the SREM functional specification.

It is significant t ?" the properties carried over from previous means

of statement are those relating to subjective measures of legibility, util-

ity and design freedom. The added properties are objectively assessable -

most readily by demonstration. Thus, a part of the program has been

the demonstration of completeness, freedom from ambiguity, and other attri-

butes through static analyzers of the explicit (machine-readable) Require-

ments Statement Language (RSL). By expressing the functional requirements

in machine-readable form, and by using the tools developed on a variety of

programs in both industry and academia, it is possible to generate an ulti-

mate test of a functional specification - a functional simulation.

A simulator built without human intervention from a specification is

a total demonstration of the consistency, precision, and completeness (In

at least a limited sense) of that specification. With a suitable driver,

such a simulation provides a useful tool for defining frequency of transac-

tion and examining the gross aspects of system tradeoffs.

Fundamentally, there are three different ways of conceiving of soft-

ware requirements. The classical approach is functional: what operations

are to be performed by the system logic, as embodied in the software. A

thread approach is more nearly mechanical: what are the interfaces and the

properties of the messages required to be communicated through them. The

third concept may be termed philosophical: what are the realities of the

world the DPS perceives, and what information about those realities must be

manipulated. Clearly, each approach can lead to mechanisms by which

3-2

-<r"-^- ^~~J~

I

requirements may be generated; SREM uses all three concurrently.

The functional approach is embodied in the concept of a Requirements

Network (N-Net), which defines the processing flow required of the software.

The mechanical concepts are reflected in the heavy dependence of SREM on

definitions of messages through interfaces in establishing the top level

of data hierarchies, and philosophy is preserved in the implementation-

independent hierarchies defined under entities. The three viewpoints are

merged in the simulation-level definitions of requirements as data and

executable descriptions; the interrelationships of the three points of

view are realized in the simulation itself. Sections 3.1 and 3.2 provide

the methodology for generating the highest level of requirement from each

perspective, 3.3 carries the definition to the next level and begins to

interrelate them through RSL statements, and 3.4 completes the methodology

for their realization in the executable description. Sections 3.5 and 3.6

suggest the means for adding descriptive and supportive information to

support specification management and documentation. Section 3.7 extends

the methodology into analytic modelling.

3.1 PHASE 1 - DEFINITION OF SUBSYSTEM ELEMENTS

There are two different "structural" elements to be defined in the

first stage of functional specification. One is the flow connectivity

previously represented with Engagement Logic or FFBD's. The other is new

with the current methodology, and defines the data hierarchies required.

Previously, there was no specific methodology even for the definition of

flow connectivity; the approach used was often to lock an appropriate num-

ber (typically 3) of the "right people" in a room for a few weeks, and watch

the product appear. By adding the data hierarchy to the structures, we have

been able to identify a step-by-step mechanism for the top-level development,

in which only the areas requiring creativity are left uncontrolled, and

those areas are clearly identified.

The first-time SREM user may find that he has to reorient his thought

processes in order to effectively use the methodology and the REVS software.

In time, he will find that the steps herein form a natural progression for

the job to be done. He should always keep in mind that his job is to develop

the requirements for software, and not to design the software itself. He

should constantly ask himself, "How can I precisely state what the DPS is

3-3

mmmmmm _ . " "" «^

required to do in the most general way, so that the designer has the maximum

range of choice in deriving the solution?"

A typical specification process usually starts with a notion of the

processing steps involved and later considers the data needed to support

that processing. SREM partially reverses this order of consideration. The

user must first ask two questions: 1) "What data are presented to the UPS

for processing?", and 2) "What data are expected from the DPS as output?"

From the answers to these questions, the user derives his concepts of the

processing steps in between.

It is suggested that the user accomplish the work at each step

across the breadth of the project before proceeding to the next step. In

large projects, involving many people, the needs of communication and

coordination make this mandatory. In smaller projects, especially those

involving one or two people, there is often a rush to do all the steps

for one small area of the system before considering the next area of

concern. This may be possible for a DPS problem where the processing

functions are independent, but, at best, many valuable insights into the

required operation of the DPS as a whole may be lost. At worst, a signif-

icant amount of rework may be involved.

*

3.1.1 Initial Inputs

The initial inputs required for application of SREM are, typically, a

system specification and its companion interface specifications. The objec-

tive is to generate a complete specification for tta data processing sub-

system (DPS) from these basic inputs. Usually, at this early stage of sys-

tem development the input specifications are incomplete, contain many ambi-

guities, and leave several issues for future resolution. The SREM user need

not wait for all gaps to be filled. Instead, the user should proceed from

that which is clearly defined, and use the facilities of the RSL management

segment to spotlight issues needing resolution. Assumptions and decisions

may be necessary, often based on inadequate data. The SREM user should not

avoid these, but should note them in the ASSM using the RSL element DECISION

and its attributes. The important thing is to make these entries as they arise.

In this way the SREM user not only leaves a traceable record of current f

3-4

fcJ,. M.. ***■ *mf .i.-^—-'■.:- ^

 ..

.

•
Status for others, but leaves a valuable record of the evolution of his

thoughts about the subsystem for his own future reference.

3.1.2 Interface Definition

The first RSL entries in the ASSM are concerned with identification

of the DPS interfaces which CONNECT with other subsystems. Usually, these

are the elements which are most clearly defined in the originating speci-

fications. Also, it has been found that the interfaces, and the messages

passing through them, are the key focal points for progressive development

of the requirements structure.

Consider the TLS specification (DPSPR) and interface specifications

(IFSs) contained in Appendix F0 These documents refer to two subsystems

which interface with the DPS, namely the Radar and the C (Command and
p

Communications). We will refer to C as a subsystem for convenience, even

though it is a separate system, external to the TLS. A closer examination

of the DPSPR reveals that the DPS is to output data to permanent files.

Although not explicitly required by the specification it will later become

apparent that it is conceptually useful to define permanent storage as a

third subsystem separate from the DPS, even though it is embedded in the

DPS. For REVS use we will name the three subsystems SSRADAR, SSC2, and

SSPERMFL, respectively.

In the specifications, three separate interfaces between the DPS and

the radar are mentioned. Through one input interface the radar sends re-

turns to the DPS; through another it sends clock inputs to the DPS. The

DPS issues commands to the radar through an output interface. We will name

these interfaces RADARJN, RADAR_CLOCK_IN, and RADARjOUT, respectively. The

names are arbitrary, but should be meaningfully related to the specification

terminology. Note that an interface is designated as "input" or "output"

from the viewpoint of the DPS.
2

Similarly, the specifications call out one input interface between C

and DPS. We will call this input interface CC_IN. Data recorded by the DPS

in permanent storage apparently are never accessed from that source during

DPS operation. Therefore, we will link the DPS to our conceptual subsystem

SSPERMFL via an output interface, DATA_RECORD.

3-5

lM|l|p|iMlliilBiWiii'li'ir-r-!
am*

..■■*,•■-■■■: .:l> ■ * "■ my

■

At this point, the subsystem and interface definitions, and their

relationships, can be coded in RSL for entry into the ASSM. Figure 3-1

shows one way of expressing these data in RSL. Note that the management,

segment attribute, DESCRIPTION, has been used to explain the nature of

SSPERMFL. This entry is for example purposes here, and will not be per-

petuated in the TLS example. However, notations such as this have value

in a real system development project and should be encouraged.

Note that the DPS itself is not entered into the ASSM as a SUBSYSTEM,

since it is inherently the object of all software requirements.

3.1.3 Message Definition

Having defined the subsystems, the interfaces, and their connections,

the next logical step is to examine the discrete blocks of data, or MESSAGES

which are PASSED BY the interfaces. A MESSAGE is MADE BY its contents,

whether they be DATA or FILEs.

One must be careful to separate the concepts of "message name" or

"message category" from that of "message type". In RSL, the identifier

associated with MESSAGE refers to the message name or category. MESSAGES

are distinguished by differences in their data contents. Thus, two blocks

of data with different data contents, which pass through an interface,

must be defined as different MESSAGES, hence must have different message

names. The message name is not contained in the data, it is an external label

On the other hand, two packets of data may have identical data con-

tent with different values, and may require different processing to be

done on the data, within the DPS. In this case one would have two instances

of the same MESSAGE, but with different "message type". One would further

expect that one of the data elements in the message would be a message type

identifier, with a unique value for each type. Otherwise, the DPS could

not distinguish between types of messages ard perform different processing

operations on each type. Messages with different names must also have a

unique identifier in order for the DPS to distinguish between messages. It

is most economical to require that all messages, whether of different name

or type, contain a type identifier as a data element, with a unique value.

3-6

COMMFCTFD To:
TNPHT^lNTFPFACt:
TMPIITllNT^PFfiCE:
OUTPUT IWTERFACe

RA0AR_IM
OAOAR"CLOCK_IN
PADAR ODT.

COMM^rTFD To:
TNJPDT INTFPFeCF CC.IN.

SUHSYST^M: SS^RMFL.
COMWECTEO TO: nUTPUT.INTERFACE! OATA_PFC0PD.
DE^C^IPTIOM: »qSPtPMFL* ALTHOUGH rONTAINEO T^J THE DPSf

I? OFFTNEO HERE AS A SUHSYSTEM FOR CONVENIENCE
IN EXPLANATION AND SIMULATION.»,

Figur« 3-1 RSL Subsystem Entries

3-7

SpfSfSf . ,i

I

'^ — S. "oX""5'^ - • SetJeT"" ^ ^ «»•"S. r,Sp.ct)ve ' S™P- ">«« «*„, the D
9 ^•"""t wut, d(f.

'- v,Iues: FEET. L?6 !eCOnd ^ ^s co„SJSt 0
tart and S'°P P^o-

f-«- Process,. '° c„nvert the ^ ^U ^ nm_

as LENGTH, over JT "" "^'^ the otw "^ INCHES- for

t0 «•« "PS. The seco?
ata e,eTOnt- «"SAGE rln h ^ COnS,StS <"

«"ts.«SAGE;;;:'cate9°^«»»^orZ' c?prov,des«*-*

"^ we can n
ate90ry We "" -«» .s a ol rnS,0na' ""'"* -t. to the ^^r^ri"'01«^«^:^-»^. rheSeoond

thit ""» ts assf" ed r'
Want t0 "« tMs „L"" "" ^ 'W- FEET

»me penoll-eno ° '" named «SAGES (n J T ",Ust »""P these

the tree before the

1

1

IN

WE^SAGE-TYPE

COMMAND

TYPES'. 'bTKZX
STOP

LEklG-TH

D»MEW5IO<0

TYPES; FEET
IKiCMES

i

Figure 3-2 An Elementary Interface Hierarchy

3-9

first branch point. Data elements unique to a specific message are placed

on the branch unique to that message. Elements common to two or more mes-

sages, but excluded from others, are placed on ?n Intermediate branch lead-

ing only to the appropriate messages. (The TLS example discussed below will

illustrate this latter condition.) The data element names may refer to data

items, or files. It is useful to note files as such on the diagram. A

file is a collection of instances of data items each instance having the

same structure. If desired, the SREM user can note the types of each

message below the message name. While the diagram format shown has proven

useful, it is in no way mandatory. The user is encouraged to adopt what-

ever notation or format aids him« The Important point Is; organlz« the
material on paper before writing the RSL inputs.

A useful rule-of-thumb for using SREM is; don't define details until

they are needed for the purposes of the moment. At thl, stage of our analy-

sis, we are interested solely in the elements which are common to, and

unique to the various message types. No further detail Is needed. For

instance, if it is known that an identifiable group of data is unique to

a given message, it is only necessary to name the group as a data item on

the tree. In practice this is often easy, because the exact composition

of the group may be ambiguous long after the group Itself Is Identified.

In any case, the composition of a group is easily defined by the RSL rela-

tion INCLUDES when that level of detail is needed.

Now, let us consider the messages in the TLS example, starting with

those coming from the C2 "subsystem". Paragraph 3.2 of the TLS C2/DPS IFS
2

states that four types of messages are transmitted from the C to the DPS;

• Initiate Engagement Mode

§ Terminate Engagement Mode

• Handover Image

• Drop Image Track

Implicitly common to all these message types Is some sort of message

type identifier. Since these are all common messages we will call this

Identifier COMMANDJD. Paragraphs 3.2.1 and 3.2.2 of the IFS imply that

there are no other data elements in the first two message types. Both of

these types have a common function, namely to command a change In the

J

3-10 ä~

t

operating mode of the DPS. Thus, they form a single MESSAGE category

which we will name MODE_CHANGE. Hence, as shown in the diagram of Figure

3-3 , we have a message MODE_CHANGE, of two types, with a single data ele-

ment, COMMANDJD, which distinguishes the two types.

The remaining two message types contain other data elements, in addi-

tion to COMMANDJD, as stated in paragraphs 3.2.3 and 3.2.4. Common to

both is an element called variously "image designation", or "image desig-

nator", but which is obviously a single element which we will call H0_ID

(shortened from HANDOVER_ID). This additional element completes the defi-

nition of the "Drop Image Track" type message. Since the data content of

this message is unique, it forms a message category by itself. We will

name this message TERMINATION because we wish to reserve DROPJTRACK for use

as an enumerated value of COMMAND_ID.

The remaining message type is also in a category by itself, which we

will name a HANDOVER message. In addition to COMMANDJD and HOJD, para-

graph 3.2.3 of the IFS states that this message contains a data element

"image estimated state". However, paragraph 1.1.2.1a of the DPSPR refers

to an "estimate of state", while paragraph 1.2.2.1g states that "each

handoff shall consist of a unique designator, the state vector, and its

covarlance matrix." At this point we could be content with defining the

data element as INITIAL_STATE_ESTIMATE. But, it seems worthwhile to state

the main components, since they are not stated In the IFS paragraph where

one would expect to find them. Thus, we define two data elements, INITIAL^

STATE and INITIAL_COVARIANCE, to represent the vector and matrix, respec-

tively. The prefix "initial" is used to avoid confusion with state data

generated by the DPS in the course of subsequent processing. Note that

there is no need, at this point, to define the vector components and ma-

trix elements individually. We have now completed, apparently, the defi-

nition of messages related to the CCJN interface, as shown in Figure 3-3.

These messages can be defined in RSL as shewn in Figure 3-4. Although not

shown here, it is useful to use the capabilities of the management segment

of RSL to note the source of the state data definitions in the handover

message, and to point out that the IFS is incomplete or at variance with

the DPSPR.

3-11

COMMAND_rD

HO. ID

XK) IT! M._ COYAP.|/SK)CE

TYRZ; HANii>oVER_iMAG€ I MOPE,.CMAK]^

TYPES: l"«T1^.EN&AfiEMaoT_(vtoDE ItEM-f

TVPE: DKOP_T^ACK 1

Figure 3-3 C2 input Hierarchy

3-12

«—.—>^--^^,..^,.„ ...„ ■^-,i>B!g,,M.pTI,w,^l..—^
Ml _^. ^.

^^^^

■- "• , ^ '■i""'' ' '" ""«*^ • -.«• . itw ». « J 1»^«0-->.^l«J«l*«S--'^a""«r>W«.» ■i:-■;^"■r-.•S

I

IWPIIT_TMTFWPi\rF : CC_TN.
PA^SFS:

MKSSAGF: •*0nF..CHAN6E
MFS^ftGF: MANHOVFO
MFS^A^E: TEW^TN/ST T'^N.

MFSSAfif: MOO^.CHAMGF.

DATA: C'">MMANn_in,

MFSSftGF: HAMOOVF-'.
HAHF F<Y:

HATA: CO^MAK,r>_ID
OATA: HO_TD

OATA: IMITIAL.STATF

OATA: iNTTIAL.COVARIANCfe.

MFSSAGF.: TE4«•T^IATIO^ .
MAOF RY!

OATA: COWi.«AMn_ID
DATA: HO.TI).

•

Figure 3-4 RSL Message Entries

3-13

.^
"■^W».."-' —i -" ' -■ -•■' '■ »'I >i nmM

J
3.1.4 The Interface Data Hierarchy

At this point we have partially defined the elements of one of the

two major data hierarchy types associated with SREM. This Is the "inter-

face data hierarchy" depicted in Figure 3-5.

A SUBSYSTEM is CONNECTED TO either an INPUTJNTERFACE or an 0UTPUT_

INTERFACE which PASSES blocks of data called MESSAGES. A MESSAGE Is MADE

BY individual Items of DATA, end/or by a group of DATA which INCLUDES

Individual DATA Items, and/or by FILES. In turn, a FILE CONTAINS individual

DATA items. The RSL concept of FILE Is more general than the usual software

connotation. It is simply a collection of Instances of data, each Instance

having the same content of data items, without regard to the details of

storage, and without ordering unless specified.

In general, a data Item must have a different DATA name in each hier-

archy in which It appears, even though the different names refer to the same

information. The exception Is that DATA o9' FILEs may exist in more than one

MESSAGE. This Is due to the fact that only one MESSAGE can be active In the

system at any time. Therefore, the assembly of DATA and FILEs into a MES-

SAGE is unambiguous regardless of the number of MESSAGES that may be MADE

BY that element. For example, a MESSAGE PASSED THROUGH an INPUTJNTERFACE

only exists at the instant of passage (I.e., the enablement of the Interface

network). An ALPHA accesses not the MESSAGE but the DATA it contains; there

can be no ambiguity among those DATA Items regardless of the number of MES-

SAGES which might contain them, since there can be no more than one MESSAGE

entering the system for a given enablement.

SREM Is heavily oriented toward an orderly analysis of the Interface

data hierarchies, in a "top down" direction, as the first step In defining

DPS requirements. This is a natural direction, as the Interfaces and the

messages crossing them are usually the most clearly defined elements of the

originating specifications. As the user develops the data definition In

progressively greater detail, the definition of specific processing steps,

or ALPHAs, begins to emerge, as well as the processing flow STRUCTURE which

links the ALPHAs.

t

*

For INPUT_INTERFACEs, the "top down" cons iaeration of the data hle--

archy follows the flow of processing. For OUTPUT INTERFACES, the "top dcwn"

3-14

■

SUBSYSTEM

(CONNECTED TO)

f

1
INTERFACE

INPUTJNTERFACE
OR

OUTPUT INTERFACE

(MADE BY)

(CONTAINS)

DATA

•
Figure 3-5 Interface Data Hierarchy

3-15

Ml J

direction Is opposite to the processing flow. However, backward tracing

from the output interface is a valuable tool 'n constructing the steps neces-

sary to form an output MESSAGE.

Initially, the internal processing required of the DPS may be ill-

defined and ambiguous. The requirements engineer will have to draw heavily

on experience to synthesize the connections between input and output. As

an aid in this creative process, he should continually ask, "What must be

done to the data I have in order to provide the output data I need?"

t

3.1.5 Preblems of Definition

"Who wrote this mess?"

That is the question one is tempted to ask when he encounters sub-
2

paragraphs 3.2.5 and 3.2.6 of the C /DPS IPS. Two Innocent subparagraph

titles lead to a number of confusing questions, which are typical of pre-

liminary specifications.

The titles of subparagraphs 3.2.1 through 3.2.4 correspond to clearly
2

defined C to DPS message types, and the content of the text addresses those

types. The contents of 3.2.5, titled "Message Acknowledgement", and 3.2,6,

titled "Error Handling", are TBS (To Be Specified). Do these titles Indi-

cate additional input message types. In conflict with the clear definition

in paragraph 3.2? If so, what message is being acknowledged by "Message
2

Acknowledgement"? No messages from DPS to C have been defined, and no
2

requirement for a DPS output Interface to the C system is indicated. In

fact. Figure F-l of the DPSPR (Appendix F) clearly Indicates that message

traffic 1$ one-way, from C to DPS.

On the other hand, a requirement for the DPS to acknowledge receipt
2

of any of the four defined C to DPS message types by transmitting a reply

to C2 may be intended. If so, both the DPSPR and IFS must be modified to

reflect this, without ambiguity. Similarly, "Error Handling" .night refer

to either a message type, or to processing in response to erroneous messages.

Resolution of these questions is important because major differences in DPS

definition result from the alternatives.

The SREM user can either stop work until the problems are resolved,

or can proceed tentatively with the assumptions which make the most sense.

3-16

. —w.ii.1 wqgi11
—"»/"'■■'■■'t*»—-■ •■■„.>->"' . ?*r

I

t

If he chooses to proceed, he should take time to note the problem in the

ASSM and identify what elements are affected by his assumptions. Figure 3-6

shows one way of doing this, for the message acknowledgement problem, using

the RSL management segment. These entries announce the problem and indicate

changes needed later if the assumptions are wrong.

The user may object on the grounds that making these entries and

recording these questions is tedious and ta^s up his time. True. How-

ever, more of his time would be taken up by other people asking the same

questions over and over again. Worse yet, others may make different assump-

tions or fail to detect the ambiguities. The result is more time spent

later on rework. With the information recorded in the ASSM, the answers

are available to everyone - even to those who haven't yet thought of the

questions.

It is not within the scope of this manual to explore all the aspects

of traceability and uses of the RSL management segment. With this brief

illustration we will drop the subject. For further development of the TLS

example, we will assume that the problems are resolved as follows:

• A message called ACKNOWLEDGEMENT consisting of one data element,
COMMANDJD, is required.

?
• This message is passed from DPS to C via a new output inter-

face. CC_0UT.

• "Error Handling" refers to error processing required of the
DPS when a message from C2 is not identified as one of the
four defined types,

3.1.6 R NET Definition

A Requirements Net, or R_NET Is used to describe the required flow of

processing in response to a single stimulus which ENABLES the net. This

stimulus may be either the passage of a MESSAGE through an INPUTJNTERFACE,

or an EVENT defined by arrival at a node on the subject R_NET or on some

other R_NET associated with the DPS.

Each INPUTJNTERFACE must enable an R_NET. Otherwise, DATA in a

MESSAGE passing the interface could not be processed by the DPS. Hence,

there must be at least one R_NET for each INPUTJNTERFACE, since only the

processing on an R_NET can distinguish between the arriving messages. Thus,

the first logical step in defining the R_NETS of the DPS is to define one for

3-17

^ ^ i ^ ■*"

MMP MMM vv ..■ ■::,- .-..■.... „ ,_..__-

nPCI^TOM: MF^MTN^.OF.MES^G^ACKNOrfLEnGFMFMT.
PROHLFMJ •IMPLICATION OF CC TO OPS IFS PARAGRAPH 3-2-5

IS NOT CLFAR. REVISION OF THIS PARAGRAPH AND/OR
OPSPR FIGURE 1-1 IS MEFDFD.*.

ALTFRMäTIVFS: t ,,.',,'
■l. INIFPPRET MESSAGE jkCKNOWLPpGEMENT AS A* MFS^AGE' TYPE

FROM GC TO OPS.
?. INTEOPRET AS A MESSAGE FROM DPS TO' CC IN R^SPOflSE

TO EACH CC TO OPS MESSAGE. THVS NEEDS' A DPS -,
V OUTPUT INTERFACE TO CC". * ,

CHOICF!
■PROCEED WITH Al TFHNATIV/E ? PENDING FORMAL RESOLUTION,»,

Flfurt 3-6 RSL Oacliloii Entry

o •

^P"' '.■■mjw 'y iwm ■'■■ii' *

3-18

-^ ■ -* '»-—■ —:■***?•

I'W»I »HI. M'1. "■'•■**—^ty^« ■.^—.— J/I*

timim

■^3^''r^fm:_.jV,mi:.,ssm.m^
^.^■.^.-^■--'-^vV^i^,-,-- ..;;, i ■■:_.. f: ■■:.^^'r<.r.:r.:-;,.^^,--*y-^,>.M.^--„ l^^y.,^,-.^ ■

each INPUT_INTERFACE. In the TLS example, three such interfaces have been

previously defined, so we need to develop three corresponding R_NETs.

R_NETS may be entered into the ASSM manually from the Anagraph termi-

nal, or via a card deck of RSL statements. No matter which method is used,

the net should be diagrammed on paper first to develop the concept fully and

minimize revisions.

As a first example, let us consider the R_NET enabled by interface

CC_IN. Following the initial node on the net, one draws the INPUTJNTERFACE

itself. It is reasonable then, but not mandatory, to provide an ALPHA for

common processing of all MESSAGES through that interface, for such purposes

as validating data common to all MESSAGES. Thus, we have this typical

starting structure.

{ CC IN J>

VALIDATE
HEADER

€

It was noted in defining the MESSAGES that they are distinguished by

the differences in their data contents. Since the input to an ALPHA is fixed,

there must be a unique ALPHA for each MESSAGE. There also may be several

message types for each MESSAGE, and it is reasonable to expect different pro-

cessing, hence different ALPHAs, for each type. While not always true, this

is usually a profitable assumption at this stage of R_NET development. Fur-

ther, an additional ALPHA is usually needed for error processing of messages

not recognized as one of the valid types. Therefore, it is possible to draw

the following skeleton associated with an input interface with the information

gained from our preceding analyses of the specifications. (Refer to Appendix

A for symbols and allowable structures.)

3-19

•,

^^^^^

INITIATE
TRACK "

1 <^jy
VALIDATE

HEADER

*

TERMINATE_ I
TRACK " 1

* ACKWyLEXE

/CC_OUT\

INITIATE_
ENGAOEHEHT

TERM:-)ATE_
ENGAGEMENT

PR0CESS_
CC ERKOR

The OR node with multiple branches, as shown, is described in RSI with
the aid of the CONSIDER phrase. The object of consideration is a data ele-

ment with an enumerated set of values, in this case the data element C0MMAND_

ID. If the value of COMMANDED in a particular message does not match the

value of any branch, the OTHERWISE branch is invoked.

The ALPHAs defined above reflect all processing required for a given

message type. The names chosen reflect a gross conception of the nature

of the processing. They are subject to change. As analysis proceeds the

definition of the R_NET will be refined. The first tentative ALPHAs may

expand, and the branching structure will be modified for all but the sim-

plest systems. Hence, the SREM user should not rush to enter an R_NET into

the ASSM at the first opportunity. He should wait until the definition of

the net has stabilized and possible relations with other R_NETS are

comprehended.

Where the previous effort was purely mechanical, it is now necessary

to apply some creativity to complete the interface network. There are two

fundamental approaches to that completion from the available documentation:

thread tracing and sentential analysis. Both should be used so that com-

pleteness of statement is assured.

0

•

3-20

I •mm—^-..i". i.» '■- "•'wmi-vn"*"' .■n.i^y- _.' -.-■-: mnmmmmmmmmm

-—-—

1
■■'■ ^^-.^..v^l^, ^o.^.,,,. y^^y,..^^.

■

3-21

t

t

The first operation is thread tracing. By reading the source speci-

fications, the processing steps required may be traced from an input port

to their logical termination. When all paths have been traced, not only

for the input networks but also for those developed in the following para-

graphs, the set of processing steps (ALPHAs) required should be complete.

Sentential analysis provides a cross-check by separating each specification

sentence into its nouns (which correspond to system data) and its verbs

(which correspond to ALPHAs). The two sets of ALPHAs should be identical;

if not, they are made to be through refinement of the diagrams.

The result of specification analysis is completion of the paths from

each INPUT_INT£RFACE. For example, there is a requirement in the TLS that

each MESSAGE received from the CC be acknowledged. Therefore the AND node

is added, an ALPHA is provided to FORM the MESSAGE: ACKNOWLEDGEMENT, and

the appropriate OUTPUTJNTERFACE: CCOUT is indicated. Continuing the

process, we arrive at the following diagram. It is a complete R_NET for

RESP0NSE_T0_CC requirements for TLS except that it does not yet reflect

inter-network connectivity. Note that each hranch ends at either an 0UTPUT_

INTERFACE, or at a TERMINATE symbol.

7
VALIDATt

HEAUER

I * ACKNOWLEDGE

/cC_0UT \

INITIATE
TRACK "

TERMINATE
TRACK

/ DATA \
\ RECORD /

T~
/ DATA \
\ RECORD/

INITIATE
ENGAGEMENT

TEP.MINATE_
ENGAGEMENT

PROCESS
CC ERHÖH r^^

•-"%, •* ■■■
~ -w—- —rr- ■

•
■

In tracing input networks, many of the MESSAGES to be output by the

software will have been isolated. However, not all messages for any 0UTPUT_

INTERFACES, nor indeed any MESSAGE for some of them, may be defined. Thus,

there is an inverse operation for output networks which trace back from an

OUTPUTJNTERFACE through individual ALPHAs for each possible MESSAGE to the

earliest operation required of it in the specifications.

This procedure is not necessary for the network above. All MESSAGES

passed by CC_IN require an ACKNOWLEDGEMENT message response to be passed by

CC_0UT. All HANDOVER messages clearly require a TRACKJNITIATION message

to be passed by DATARECORD. The above network completely describes the

only conditions where these responses are generated within the DPS. A

TRACKJTERMINATION message is passed by DATA_RECORD in response to an input

TERMINATION message passed by CC_IN. However, this case represents only

one condition where a TRACKJTERMINATION message is generated by the DPS.

The remaining conditions will occur on other R_NETs. But, all of these

responses have one thing in common. Each is a single MESSAGE passed through

a specific OUTPUTJNTERFACE in response to a given MESSAGE or class of

MESSAGES passed by a single specific INPUTJNTERFACE. These are examples

of "synchronous processing": the input is joined to the output by a direct

path of processing steps, and none of the data used are modified by process-

ing performed on any other path.

In the context of R_NETs, logical connectivity is maintained, not only

by a continuous path through one R_NET, but perhaps through additional R_NETS,

by means of EVENTS. An EVENT is an alternate means for enabling an R_NET.

A single logical path is formed by the path leading to the event on the

enabling R_NET and continuing on a path on the enabled R_NET. Such paths

represent "synchronous processing" only if none of the data used are modi-

fied by an independent path.,

"Asynchronous processing" is a more complex concept to grasp. This

type of processing is implicit when two R_NETs are related by data, but

without the "logical connectivity" represented by flowing tokens. An exam-

ple Involving three simple R_NETs will serve to Illustrate the basic forms

of "asynchronous processing." The example is defined 1n Figure 3-7.

Whenever a subsystem SSI passes an XIN message through the DPS inter-

face SSIJN, the R_NET named XJ/ALUE is enabled. This R_NET accepts the

3-22

11

§

■j

■

•

t

R NET- X VALUE

MESSAGE: XIN
MADE BY DATA: NEW X

NEW X VALUE AVAILABLE

\7
R_NET: ZZJALUE
(EVENT: DLLTAJ)

NEW Z AVAILABLE

SQUARE Z :z=z'

(E)DELTA T

A

R NET: Z VALUE

\z

SS2 IN

MESSAGE: YIN
MADE BY DATA: Y

Z«X+Y

SS2 OUT
MESSAGE: ZOUT

MADE BY DATA: Z

Figure 3-7 Three Asynchronous RJIETs

3-23

V
■J-——

"I ._ .. .,_.

data NEW_X In the message and, if NEW_X satisfies certain conditions, up-

dates the value of a global variable, X, to the value of NEW_X. Whenever

a second subsystem, SS2, passes a YIN message through the interface SS2_IN,

the R_NET named ZJ/ALUE is enabled. This R NET accepts the data Y in the

message and adds it to the current value of X defined in the data bast to

form Z (defined as a global variable for this example). The value of Z Is

contained in the ZOUT message sent to SS? via SS2_0UT, but is also retained

in the DPS because Z is defined as globa.' data. Further, a third R_NET
2

named ZZ_VALUE periodically enables itself, to compute Z , by means of an

event on its own structure and an associated time delay. The value of Z

which is used is, of course, that which is current in the data base. There

is no specific order of enablement required of the R_NETs.

When the reader experiments with this system a little, he will

quickly realize that the values of Z and Z depend not only on the inputs X

and Y (or their previous values), but also on the sequence of enablement of

the R_NETs. Thus, within a given time interval, there is not a one-to-one

correspondence between the latest values of X and Y and the latest values of

;

Z and V
-.2

For that matter, no such correspondence exists between Z and

A simple example of "asynchronous processing" in the TLS example

might be the use o^ radar clock time. The sole fun:tion of the R_NET

called RADAR_TIMING is to accept timing inputs from the radar and update

the global variable RADAR_CLOCK. If another R_NET needed radar time, it

would use the value of RADAR_CLOCK. This value does not reflect the cur-

rent time, but rather the time at which the radar formed the message which

was last accepted by the R_NET called RADARJTIMING.

The mejor, and most complicated, example of "asynchronous processing"

In the TLS 1s the relationship between radar returns and the next set of

radar Cümmands. Synchronous tracking would require that data from the last

radar return from an object be used to produce the next succeeding radar

order related to that object. Asynchronous tracking allows use of the last

data available In the DPS, even though more current data may be coming soon

from the radar. Asynchronous tracking allows less stringent DP response

times, better time-line usage, and permits gradually degraded response with

Increased system load. Synchronous tracking, on the other hand, places

3-24

-w—

x

stringent constraints on the DP which lead to saturation and loss of track

under relatively light load.

The definition of an asynchronous processing concept is subtle and

difficult, and is fraught with traps for the unwary. No cookbook solutions

can be offered for this creative process. First, the R_NETs must be traced

both forward from the input interfaces and backward from the output inter-

faces. The data and logical connectivity to fill the gaps between must then

be added through an active and creative engineering thought process. Note

that SREM does provide a framework of organization which fosters consistency,

and ultimately leads to a simulation which can detect errors of concept.

While the SREM user is filling in the gaps in the DPS definiticn, Se

must constantly remember that he is not designing software. Rather, he is

defining the requirements which that software must satisfy. When he has

invented a construct which appears to meet the needs, and which survives

simulation, he should view it only as an example which demonstrates that

a DPS solution to system requirements is feasible. It is probably not the

only valid solution, nor should it be specified as such. The SREK user

should constantly reexamine his constructs to ensure that they embody the

requirements in the most general statements he can formulate. If he pur-

sues details beyond the point needed to clearly state the required proper-

ties of the DPS, he is overly constraining the design.

When the user reaches an impasse in further defining the R_NETs, he

will find it profitable to define the "entities" with which the DPS is con-

cerned, and the data hierarchies associated with them. These are discussed

in 3.1.7 and 3.1.8. These steps will sharpen his concepts of the data flow

within the DPS, and should suggest ways of bridging the gaps in the processing.

Then the user can return to complete the R_NETs, and possibly add intervening

R NETs.

>

3.1.7 Entity Definition

One of the most powerful concepts used in SREM is that of an "entity".

This concept allows the user to express more clearly the role of the DPS

requirements in the same operation, and the RSL facilities provided tend to

enforce that perspective. An "entity" is simply a thing, or category of

3-25

"'-"-
ÜBT

,^, ^—-»——A-*^--«-.

things, In the external world about which the DPS must collect, process,

and maintain data. Entities are closely tied to the reasons for the exis-

tence of the system and its DPS. They are usually implicit in the wording

of the originating specifications, although the new SREM user must train

himself to recognize those which are of significance.

For instance, the basic purpose of the TLS is to gather data on the

position and velocity of designated objects within its detection range in

order to predict the position and velocity of those objects at some future

time. This suggests that "objects" might be an entity. However, "desig-

nated objects" would be a better candidate, because the TLS is not expected

to detect any objects other than those the C System orders it to track.

If we were considering the TLS as a whole, this might be a reason-

able choice. But, we are focusing on the DPS. The DPS is not "aware" of

objects because it does not perceive them directly. The radar performs

the sensor functions. Thus, the DPS is only aware of what the radar per-

ceives as objects and reports to the DPS. The nomenclature of the DPSPR

calls these "images". Further reading of the DPSPR shows that much of the

DPS processing is concerned with the proper classification of these images,

and eventual elimination of those which do not correspond to real objects

(ghosts), or which are redundant images of the same object. During the

time that an image is considered an "image in track", a certain instance

of data items must be maintained in the DPS and be associated with the

proper image. When the DPS decides that the image is probably redundant

or a ghost, or should drop track on that image for other reasons, the DPS

must maintain, for a time, a different set of data about that image.

Thus, we have a notion of a general category of things called "Images"

which are of importance to the DPS. In SREM, such a category is called an

ENTITy_CLASS. Hence, for TLS we will define an ENTITY_CLASS named IMAGE.

We are aware of two types of IMAGE, distinguished by the different data

associated with each type. Therefore, we will designate two ENTITYJTYPEs,

called IMAGEJNJRACK, and DROPPEDJMAGE. Each IMAGE of which the DPS Is

aware has an Instance of data uniquely associated with It. This Instance

may be composed of DATA Items and FILEs. The composition of the Instance

Is a function of ENTITY_TYPE and, by definition, should be different In some

manner from at least one other type in the class. However, data common to

3-26

fK

•

■ T , '* V"-*.;-.!,»-,.^,«,,;,,,,
■

t

all types may be associated with the ENTITY_CLASS itself. Two types may

have identical data associated with them. These usually imply a tran-

sition from a common earlier state (e.g., an ENTITY_JYPE I is set to

either ENTITYJTYPE J or ENTITY_TYPE K depending on some decision in the

DPS).

A second ENTITY_CLASS is defined in TLS for each radar PULSE. The

pulse is an external phenomenon (an electromagnetic signal) about which the

data processor is found to need data, and which exists in multiple copies.

Therefore, it satisfies the criteria for consideration as an ENTITY_CLAS5.

The fact that data must be 'remembered' about each pulse while it is in

transit, and the required data themselves, derive from the IPS through the

process of defining the functional requirement. Thus, when considering the

determination of range to the target, it is necessary to know both the start

time of the range gate relative to the start of transmission and the time

within the gate that the signal was detected. The IPS asserts that the

radar return contains the time within the gate; the start time of the gate

must therefore be 'remembered' by the data processor from the command which

gave rise to the return. Thus, the data required on a pulse in transit have

to do with the transmission parameters relevant to different pulse waveforms.

Consideration of data and logical usage differences leads to the definition

of four ENTITYJTYPES named T1-T2, T3, RETURNED_PULSE, and LOST_PULSE within

the ENTITY_CLASS PULSE.

3.1.8 The Entity Data Hierarchy

The second major data hierarchy associated with SREM is the "entity

data hierarchy" depicted in Figure 3-8. The means for manipulating data

contained in an entity herarchy differ from those used with the interface

hierarchies of 3.I.4.

An ENTITY_CLASS is COMPOSED OF one or more ENTITY_TYPE5. If there

are data elements common to all ENTITY JYPES, then the ENTITY_CLASS ASSOCIATES

these DATA items and FILEs. For data elements specific to an entity type,

the ENTITYJTYPE ASSOCIATES the applicable data elements. Once again, the

DATA item is the lowest element in the hierarchy. Each FILE CONTAINS items

of DATA.

3-27

- '■'!»!«'"'■'"u' *""" "■'-'"

■HMfcrT

■1|WWII%L. _ _■ ...— ■ "•'«•

(ASSOCIATES)

^p

Figure 3-8 Entity Data Hierarchy

3-28

.*

X I

1

•

The chief characteristic of the entity data hierarchy is the unique

method of manipulating data which is implemented in RSL. There is no way,

in RSL, for a user to specify that a FILE be created or destroyed by an

ALPHA. FILEs may only be modified by ALPHAs (although instances in files

are created or destroyed in the BETA models). RSL provides a mechanism to

require that an ALPHA is to CREATE or DESTROY the knowledge that an instance

of an ENTITY_CLASS exists in the environment. When an ALPHA creates a new

instance of an ENTITY_CLASS, a new instance of all the common DATA and FILEs

ASSOCIATED WITH that class is initialized. The ALPHA may then assign proper

values to those data elements. These data elements are retained throughout

the life of the instance.

The ALPHA can also SET the ENTITYJTYPE. When this is done, an instance

of all the specific DATA and FILEs ASSOCIATED WITH the ENTITYJYPE is

initialized and can be assigned proper values. When the instance of ENTITY_

CLASS is SET to a new ENTITYJYPE, the specific data elements unique to the

old type are destroyed and a new instance of data elements specific to the

new type is initialized.

As the data processing system gathers information about an entity, it

may first identify the entity as being of one ENTITYJTYPE, and then another.

Instances of a class of entities thus evolve from one type to another, but

instances of one class (e.g., IMAGEs) can never evolve into another class

(e.g., PULSEs). Each ENTITYJYPE therefore COMPOSES just one ENTITY_CLASS.

An instance belongs to one ENTITY__CLASS after an ALPHA CREATES it, and it

belongs to the last ENTITYJYPE to which an ALPHA SETS it. Eventually, an

ALPHA may DESTROY (knowledge of) the instance, and all data associated with

the instance vanish. Although the RSL statements for CREATE and DESTROY

refer to the name of the ENTITYjCLASS, the operation is applicable only

to a single instance.

This concentration of the requirements for creation and destruction of

knowledge about external entities, rather than the mechanics of data struc-

tures, allows the user to focus on the requirements for the DPS as a part

of the system in which it is embedded. Otherwise, the user would tend to

stray into process design issues, such as when to set up FILEs.

3-29

., <L
mmmm mmm

«HASS"!

mn

As was done with MESSAGES in 3.1.3, it is useful to diagram the entity

data hierarchies before coding them in RSL. Figure 3-9 shows diagrams

of the TLS hierarchies associated with the two ENTITY_CLASSes, PULSE and

IMAGE. When the user decides that the definitions are stable and ready to

enter in the ASSM, the entries can be coded in RSL as shown in Figure 3-10

for IMAGE.

3.1.9 Independent FILEs

When the user is defining the processing requirements, he may become

aware of the need for data sets which fit in neither a transient Interface

data hierarchy nor a permanent entity data hierarchy. These should have

the properties of 1) multiple Instances of a data item or data group, and

either 2) a need to be retained as GLOBAL data, or 3) a need to be ordered

In some particular way, or 4) a need to be temporarily maintained as a class

of data meeting some selection criteria. These needs can be satisfied by

defining an Independent FILE. This FILE exists in the DPS at all times,

even though it may be empty. Although instances in the file can be created

and destroyed within BETA and GAMMA executable descriptions of ALPHAS, the

FILE itself cannot be created or destroyed. It can only be modified. FILEs

can be INPUT TO ALPHAs or OUTPUT FROM ALPHAs or both.

The distinction between the concepts of ENTITY_CLASS and Independent

FILE often may appear fuzzy. The key distinction is that a FILE is a set of

data, an ENTITY_CLASS Is the subject of data.

In the TLS, there exists a file of constants called WAVEFORMJABLE.

This FILE Is part of the site-adaptation data for the system, and Is inde-

pendent of real-time input. Two other TLS examples of Independent FILEs

are those called COMMAND and CANDIDATE. These files are dynamic (I.e.

change in response to real-time data). Both of these files are used to

ttltct Instances from ENTITY_TYPE IMAGE_IN_TRACK and to order the extracted

data to determine new instances of ENTITY_CLASS PULSE. Thus, these files

are part of the data bridge between the two ENTITY CLASSes in TLS.

If ■ —„^,

3-30

•

^WTl ^ CLASS/p^flg-

IV \rf

LetfZ \'ULstl

r^^^M^Kcic

)

i
Figure 3-9 Entity Hierarchy

3-31

.
■

I

>t

PMTITY_CLASS: IMAGF.

nnTA: lMAr,F:_Tn
HATA: EMTUY_TIO'^ .

COMPOSFD or:

FNTTTY_Typf-:: lM/5(,r_iN_T^ACK

FMTITY^TYP^: TMAr.F_lM_TkArK,
AS^nCTATFS:

'^ATA: STATF.
nATA: CovaPiA-ir*
HATA: TWAPK^BAT»-
riAT*: hAVFFnuM,

FNTTTY_rYPt: r<»ODOt:i_TMA(5F,
AS«:nrTATFS:

fTLF: TEOMIMATOP,

Flgurt 3-10 RSL Entity Entry

t
3-32

I

3.1.10 Summary of Phase 1

This section has outlined a general procedure for defining the ele-

ments needed to specify the requirements for the DPS. At this point many

of the definitions are gross and tentative. The constructs may have been

entered into the ASSM as they were defined, or they may just exist on paper.

This choice is up to the user, and depends upon the size and nature of the

DPS problem, and the number of people involved.

The following "top down" sequence of steps has proved to be the most

effective:

1) Define the subsystems relevant to the DPS.

2) Define the interfaces connecting the DPS to the sybsysterns.

3) Establish the messages passing through the interfaces, and
define their data contents.

4) Develop the R_NETs originating at input interfaces.

5) Construct processing steps, tracing backward from the output
interfaces when necessary.

6) Define the entities of concern to the DPS, and the associated
data hierarchies.

7) Define independent files as necessary.

8) Refine the R_NETs and create new ones, as needed, to link
the input and output interfaces.

Some variation on this sequence may be appropriate to certain problems, but

the basic principle is to move from known interfaces to internal processing

steps, using the data definitions as a vehicle.

The ALPHAs defined at this point will be primitive, and will reflect

high level concepts of the nature of the processing. In Phase 3 (Section 3.3)

they will be modified, and expanded into subnets, as necessary. But first.

Phase 2 (Section 3.2) is needed to consolidate the information developed and

to ensure that it forms a consistent basis for detailed development.

3.2 PHASE 2 - EVALUATION OF THE KERNEL

Before completing the definition of the functional requirements struc-

ture, it is prudent to enter the information derived in Phase 1 (3.1) into

the ASSM and check the results, both manually and with the aid of Require-

ments Analysis and Data Extraction (RADX) procedures. Therefore, all infor-

3-33

mation from the paper constructs that has not been previously entered for

convenience should be loaded into the ASSM at this time. This nucleus of

information, called the "kernel", constitutes the irreducible minimum needed

to document the major elements of the functional requirements definition.

In this section we will suggest particular points for the user to check,

and will refer him to TLS examples in Appendix C.

3.2.1 Data Naming Conventions

RSL has been designed to force the user into precision of thought,

with respect to data definition, at an early stage. A single item of infor-

mation may require several different DATA names in the course of its exis-

tence in the system. These are applied as the usage of the information and

its properties of transience or permanence dictate. Naming is a tedious

process, and may lead to a variety of awkward names, but it is mandatory

in the development of a coherent, unambiguous DPS model. While the RSL

translator will detect most common ambiguities jr conflicts, the user should

continually refine his understanding of the data flows within the DPS In

order to catch more subtle errors.

The entity data are the first to display the constraints imposed by

RSL naming conventions. In general, it is necessary that a data element

exist in only a single hierarchy; the sole exception Is that it may exist

In multiple MESSAGES. Thus, we find that the Identifier of an image being

tracked Is both the TARGETJD ASSOCIATED WITH PULSE and the IMAGEJD ASSO-

CIATED WITH IMAGE. The two values are the same when the TARGETJD Is

assigned, but note that the destruction of an Instance In one ENTITY_CLASS

is unrelated to the existence of an Instance of any other. The meaning of

a single Identifier, If the IMAGE Instance were destroyed while the PULSE

was still active, would be Indeterminate. It Is only to resolve such Inde-

terminacy that the naming rules are Imposed; here, the "same" information

is given different names for the two occurrences In different hierarchies.

The identifier used for an IMAGE is given to the RESPONSEJXKC R_NET

as a H0_ID (handover Identifier). The same name is applied to a drop-track

command when a TERMINATION message is sent, and also any of three MESSAGES

through the DATA_RECORD Interface, whenever Information about that image Is

updated. However, when the Information Is to be held In global storage f
3-34

■.■^■».^—■'»»»W i—■'»".''

K;^^?mtm^amH-:.,. :
;

t

(such as for an entity), a difference name must be applied (IMAGE_ID for the

IMAGE class, TARGET_ID for PULSE). The requirement for renaming to avoid

ambiguity is needed in order to construct an executable description (Section

3.4).

3.2.2 Structural Data Definitions

R_NETS can be entered into the ASSM in two ways. Using REVS in the

ONLINE mode, the nets can be entered interactively via the Anagraph terminal

at the ARC facility. Using REVS in the OFFLINE mode, the nets can be speci-

fied by an input deck of RSL statements. If the offline mode is used, cer-

tain DATA which are integral to the R_NET structure must be defined with

appropriate statements before the set of statements which define the STRUC-

TURE of the R_NET can be integrated. Prior data definition is not necessary

if the Anagraph terminal is used, but should be accomplished within Phase 2

for completeness of the kernel.

Structural DATA elements include those which are referenced in FOR EACH

statements, CONSIDER statements associated with an OR node, and conditional

expres?icns associated with an OR node. The latter two types are called

"selection variables." Other DATA which should be defined at this point are

those which DELAY the occurrence of an EVENT or ORDER a FILE.

The FOR EACH statement may be absolute or conditional. The object

upon which the statement operates can be an ENTnY_CLASS, ENTITYJTYPE, or

FILE. While the FILE is usually associated with one of the interface or

entity hierarchies, assumed to be defined previously, some FILFs may exist

independently from any hierarchy, as discussed In 3.1.9. The user should

verify that all elements used in FOR EACH statements are declared in the

ASSM prior to the R_NET which uses them. Elements used in the condition

part of a conditional FOR EACH must be defined as discussed below for

selection variables.

Selection variables require added definition at this point because

of the mechanics of the RSL translation process. In addition to declara-

tion of the DATA name, its TYPE must be identified. Further, if the TYPE

is ENUMERATION, the RANGE of values must be defined before the RJET STRUC-

TURE can be translated.

3-35

While not mandatory, It is recommended that the LOCALITy and USE

attributes for selection variables also be defined at this point, and be

verified manually. This Is because REVS consistency analysis does not

Include DATA referenced In conditional expressions. Thus, the software

cannot detect definition errors until execution of a BETA or GAMMA simu-

lation. Figure 3-11 shows RSL Inputs which are typical TLS examples of

selection variable definition.

The Identification of selection variables within a systm Is usually

straightforward. These are simply the decision parameters whose value

determines whether one series of processing steps or an alternative Is to

be done. When multiple message types pass through an INPUTJNTERFACE, the

type Identifier contained In the message Is, with no known exceptions, a

selection variable (e.g.,COMMAND_ID In the CCJN Interface hierarchy). Since

the data Input to an ALPHA Is fixed, and since each message type Implies

either different data content or different processing, there must exist

at least one unique ALPHA for each message type.

3.2.3 Entering R_NETs In the ASSM

The required Information about each R_NET Is Its name, enabling

mechanism, and structure. In the current version of REVS, names assigned

to R_N£Ts, SUBNETS, and ALPHAS must be unique within the first eight

characters. For all other RSL elements, names must be unique over a

field cf sixty characters, which Is the maximum name length allowed.

The enabling mechanism of an R_NET Is either a single INPUTJNTERFACE

or a single EVENT. If a message passing through an Interface Is the mecha-

nism, then the first statement In the R_NET STRUCTURE Is an INPUTJNTERFACE

name declaration. In the case of EVENT, the EVENT name does not appear In

the STRUCTURE of the enabled R_NET. However, It appears In the STRUCTURE

of the enabling R_NET at the appropriate point.

When the R_NET Is entered Into the ASSM via card Input, data elements

which appear In the STRUCTURE must be predefined In the ASSM. These date

are discussed In 3.2.2. The R NET STRUCTURE Is discussed In 3.2.4.

1

3-36

■

HAFA: vnoF,

TYPT: FMiJMPwATT'lM,
^AMTiF: "FNftAfiF.I, STANIDIIY«,

LOCAL TTY: ('I 0«AL.
DS^: uoTM,

OATA : L ACT_OIII Sh .
TYPF: PFAL.
LOPALTTY: I nrAL.

OATA: Jr-->l>r.KJ~>f\Tt,

TYDf: MFAL.
LOPALTTY: ^I ORAL.
Der; -<nTH.

OATA: TFOF.
OF^C^TPTin »:

"Tf-.OF I«: THF Tl^F OF J*t I-'"' OF Tnp. fQa*f, TT TS USEO
TN «FI.ECTT*!« ^A^OTOATf•S FOW THAMSMlSSTON FM THIS FRAMp.«.

TY'J^ : t^FAl.,
LOCALITY: I 'KAL .
HSF: K^TH.

Figure 3-11 RSL Data Entry

3-37

..- „ ~

-f.-» •«=„',., H

3.2.4 The STRUCTURE of ?.n R NET

Flows through the system are specified in RSL as Requirements Networks

(R_NETs). R_NET flow STRUCTURES consist of nodes, which specify processing

operations, and the arcs which connect them. The processing nodes are ALPHAs,

which are specifications of functional processing steps, and SUBNETS, which

are specifications of processing flows at a lower level in the hierarchy.

The processing nodes are single-entry, single-exit.

In addition to the simple sequential flow whi^h may be represented by

connecting this type of node, more complex flow situations are expressible

in RSL by the use of structured nodes which fan-in and fan-out to specify

different processing paths. These nodes are variations of AND and OR nodes,

and include an OR with a CONSIDER statement. The REVS Users Manual contains

an extensive discussion of these structural elements anu should be reviewed

by the new user. The TLS examples in the appendices of this volume should

also be studied to understand the format of various structures.*

*NÜTE: In the version of REVS used to generate this document there were two
differences between acceptable STRUCTURE inputs and listed outputs. These
concern the CONSIDER and FOR EACH statements. In each case the element-type-
names, which are automatically inserted in the output, must be omitted in the
input. Where the output list would read:

CONSIDER DATA: MODE

FOR EACH ENTITY TYPE: RETURNED PULSE
DO ALPHA: SUMMARIZE USAGE END

the input statements must read:

CONSIDER MODE

FOR EACH RETURNED PÜSE
DO SUMMARIZE_USFat UIQ

The current version of REVS will accept inputs in either format.

m

3-38

MqM ft ■ :;M.*v.-i #f ^teö,. I

■

t

Indentation is used in the STRUCTURE declaration to facilitate reading,

hen entering the declaration on cards, using REVS in the offline mode, the

user should follow the indentation format typified by the REVS output exam-

ples in the appendices. This is not mandatory, but it is strongly recommended

in order to check the output against the input. In this way, the user

can quickly detect where REVS has interpreted the STRUCTURE in a different

way than the user visualized.

In addition to describing the processing flow of an R_NET, the STRUC-

TURE declaration may also serve to declare the existence of the named ALPHAs

and SUBNETS. The STRUCTURE of any SUBNETS should also be declared at this

time. Further definition of the attributes of ALPHAs will take place in

Phase 3.

If Anagraph or CALCOMP plots of the structures are desired, graphic

data must be entered for each R_NET. Currently, this graphics information

can only be entered from the Anagraph terminal. The Anagraph plots are

useful while working interactively at the terminal. The CALCOMP plots are

more useful for permanent retention, and for documentation, as in Appendix D.

•

3.2.5 Checking the Kernel with the Aid of RADX

As part of the auditing process, it is useful here to define a set of

RADX directives which assist the engineer in determining the completeness

of his entries into the ASSM at this stage. Two operations are recommended

which are simple, but revealing:

1) APPEND R_NET STRUCTURE, ENABLED.

LIST R_NET.

2) APPEND SUBNET STRUCTURE, REFERRED.

LIST SUBNET.

These directives generate a listing of the RNETs with their structures and

enabling events or interfaces. Clearly, each R_NET requires a structure,

and an enabling condition, and any failure of that class is detectable here.

Similarly, the correctness (agreement with intention) of E^NT naming may

be confirmed.

3-39

.■ ■ ■

While it is possible to confirm the structures by inspection of the

RADX output, most people find reading the equivalent diagrams (generated

by RNETGEN) simpler; since they are equivalent representations, either the

CALCOMP illustration or the RADX listing may be employed for the purpose.

(Note that viewing the Anagraph output at the terminal is less useful since

all element names are truncated to three characters and since branching

criteria are not immediately displayed.)

It is in data analysis that the RADX tools are most useful at this

stage. Let us define two hierarchies for data output:

HIERARCHY FILES = FILE CONTAINS DATA DATA INCLUDES DATA.

HIERARCHY DATUM ■ DATA INCLUDES DATA.

Now, we wish to identify the DATA items and the FILEs which are not linked

with higher data levels (entities, or messages). One way derives from the

following definitions:

SET A = ALL WITHOUT ASSOCIATED.

SET ß = A WITHOUT MAKES.

SET C = B WITHOUT CONTAINED.

SET D = C WITHOUT INCLUDED.

Now the RCL (RADX) directive: LIST B WITH HIERARCHY FILES will generate

both the file names and the data comprising each such file where the file

is not associated with an entity and does not make a message. Such a free-

standing file should be a conscious product of requirements engineering and

not an accident.

Free-standing DATA may be extracted by: LIST D WITH HIERARCHY DATUM.

Note that the HIERARCHY DATUM is used here as a convenience to limit the

output to the names of the top data level not constituting part of a hier-

archy; it does not in fact cause INCLUDED DATA to be output, since the SET

from which the extraction is effected (0) has no members which are INCLUDED

in any DATA. To complete tracing of the data hierarchies, yet another SET

would have to be defined containing the DATA extracted by LIST D WITH HIER-

ARCHY DATUM, and that SET would then be LISTed with HIERARCHY DATUM.

Typically, free-standing DATA and FILES may be local or global con-

stants. Each item extracted by the methods outlined above should be assessed

to determine whether in fact It should be isolated or Is properly a constituent

3-40

%

y^M». «». »' %.<H"»W«'
Tssa ■ i^ii.Vi^. ii .iimwililpin.iii

. ^ ^. ^
■

t

of an entity or interface hierarchy.

Finally, the following HIERARCHies may be defined, and each may be

used to complete the RADX directive: LIST ALL WITH HIERARCHY .

HIERARCHY ENTITY =

ENTITY_CLASS ASSOCIATES DATA

ENTITY_CLASS ASSOCIATES FILE

ENTITY_CLASS COMPOSEP ENTITYJTYPE

ENTITYJTYPE ASSOCIATE? DATA

ENTITY_TYPE ASSOCIATES FILE

FILE CONTAINS DATA

DATA INCLUDES DATA.

HIERARCHY INFACE =

INPUTJNTERFACE PASSES MESSAGE

MESSAGE MADE DATA

MESSAGE MADE FILE

FILE CONTAINS DATA

DATA INCLUDES DATA.

HIERARCHY OUTFACE -

OUTPUTJNTERFACE PASSES MESSAGE

MESSAGE MADE DATA

MESSAGE MADE FILE

FILE CONTAINS DATA

DATA INCLUDES DATA.

The result is to extract from the ASSM the complete kernel of the require-

ments, as illustrated in Appendix C.

3.2.6 Summary of Phase 2

This phase has been a period of consolidation, between the initial

definitions of Phase 1, and the completion of those definitions in Phase 3.

Nonetheless, the end of Phase 2 is an important milestone in the total effort.

For the first time, the kernel of the requirements construct has been

loaded into the ASSM as a whole. Many of the early mistakes and inconsis-

tencies will be detected by the RSL translator during the entry process.

More important, the requirements engineer can now use the facilities of the

3-41

-

Requirements Analysis and Data Extractor (RADX) to aid him in checking his

work.

The introductory uses of RADX, in 3.2.5, will be built upon and ex-

panded in Phase 3. Eventually, the user will compile his own library of

RADX procedures he values. In future efforts he can use these "off-the-

shelf" procedures as part of th-i evaluation sequence which he finds most

productive.

3.3 PHASE 3 - COMPLETION OF THE FUNCTIONAL DEFINITION

The work through Phase 2 has provided definition of the higher-level

elements of data hierarchies; definition of R_N£Ts, their STRUCTURES, and

their enabling events; and declaration of the existence of ALPHAS and their

place in the R_NETs. This information has been entered Into the ASSM and

has been subjected to some form of checking.

It now remains to complete the definition of these elements to pro-

vide a basis for construction of an executable simulation. Each ALPHA must

be defined In terms of Its data transactions, and definition of all DATA

which are known to be INPUT TO or OUTPUT FROM an ALPHA must be completed.

In general, the DATA which can be described at this stage are either those

global to multiple R_NETs, or those local DATA which make messages. The

need for additional local data Internal to the R_NETs will be discovered

In the development of executable descriptions (Section 3.4). At that time

the need for definition of lower levels of the existing data hierarchies

may be apparent.

During this process, the original primitive ALPHAS will often need

redefinition. Additional ALPHAs can be added, or the original ALPHAs

can be redefined as SUBNETS, which prtserves traceablllty and minimizes

modification of the R_NETs. Occasionally, the STRUCTURE of the net may

change, or new nets may be added, as the processing requirements evolve.

The following phase will be devoted to construction of a functional

simulation, using BETAs, which are executable descriptions of the ALPHAs.

In preparation, the user should bear In mind that he Is going to execute

a simulation of the requirements for the DPS «oftware, and not of the soft-

ware itself. His primary goal In this simulation Is to ensure that the

requirements are complete and consistent.

3-42

1

f

t

:

t

Since the major interactions of the R_NETs have been defined in the

previous stages (Sections 3.1 and 3.2), it is now practical to partition

the work into essentially isolated efforts for several engineers. Each

parcel must consist of one or more R_NETs, each considered by a single

engineer or group. Since the relationships among R_NETs have already been

defineu, the interactions among parcels will be restricted to joint agree-

ment on the content of communications (usually individual DATA) between

pairs of engineers, and need not be coordinated extensively over the

system as a whole. The sole exception to that rule is in naming conven-

tions, where a possibility of conflict exists, and where control is useful.

3.3.1 Data Transactions

The user presumably had some concept of the DATA which were to be

INPUT TO and OUTPUT FROM each ALPHA when he named the ALPHA and placed it

in the STRUCTURE of an R_NET. After all, the inputs and outputs determine

the processing needed to be done and dictate the function of the ALPHA.

Now the gross concept must be precisely defined. During this process,

additional data definitions or more detailed definition of existing hier-

archies may be necessary.

As the user develops the data transactions and the hierarchy transi-

tions discussed in 3.3.3, he will be forced to consider the processing

steps within each ALPHA which transform the inputs into the required out-

puts. He may wish to note his conceptual ideas of the procedure into the

ASSM, in English text, using the RSL attribute DESCRIPTION. A structured

English description of the processing can later be used for reference during

development of the BETAs which are written in PASCAL. If, at this point,

it becomes apparent that significant logical branching must occur within

the ALPHA, the ALPHA can be redefined as a SUBNET. In this manner the

logical structure requirements are made explicit in the STRUCTURE definition

of the SUBNET and new ALPHAs are defined to specify the operations within

this structure.

As «n example of the thought process involved with data transactions,

consider the ALPHA named INITIATEJTRACK. This ALPHA is on the CC_RESPONSE

R_NET and is on the processing path activated by a HANDOVER message of type

HANDOVERJMAGE (= COMMANDJD). Since COMMANDJD was used as a selection

•-

3-43

"•""* »n order to
"'»'"the^^ " reach "-e ALP«. jt

"«« INITHT£ ^ ■ theSe M" »W be
MC£ named DATA or. '"ÜSt F0RM ' KSSAV t

"^ be '^r TO ^^ ** -er be 0 C":"^^ tbe ,.,.«'

, khat "^t(o„aI D • WMC', fs "en OUTPUT N "^ for

'"« on , „,„ ," "K "«^ Provided f- th I ^«-'«TMre? It,

" '« .1.0 rea
d'" WV£F0R«- - ' £NT'!,'-nH£.

I

I MM. >..,. i •■ .I.«I ■■■»■. -»' ■.-a>1.ii- .,..«.■.
 „ -C-

1

i

them as OUTPUT FROM the ALPHA. Figure 3-12 shows the declaration, in RSL,

of all the data transactions of TRACKJNITIATE. From our concept of the

processing, it appears that the original ALPHA is adequate and no additional

ALPHAs, or redefinition as a SUBNET, are required.

3.3.2 RADX Evaluation of Data Transactions

In addition to confirming entry of attributes and relationships through

RADX directives (e.g., LIST ALPHA.), it is now useful to extract the specific

cases which are potential errors, or are at least anomalous to the point

where they demand special attention. For example, it is possible for an

ALPHA either to have no INPUTS or to have no OUTPUTS, or even to have neither,

without its being erroneous; but the normal case is that each ALPHA will have

both. Having completed the RSL declarations about the ALPHAs at this stage,

it is meaningful to define the following:

1) SET A = ALPHA WITHOUT INPUTS.

2) SET B = ALPHA WITHOUT OUTPUTS.

3) SET C = A WITHOUT OUTPUTS.

Remembering that the declaration of a SET generates a count of its members,

we may discover that SET C is empty; that would indicate that each ALPHA has

either an INPUTS or an OUTPUTS relationship (or both). However, in TLS,

several ALPHAs have neither. In particular, the error-processing elements

are required to exist, but have no other specifications; therefore, they

have no accesses defined. Similarly, the ALPHA:ACKNOWLEDGE exists solely

so that the ACKNOWLEDGEMENT message may be FORMED; since the processing

modifies no DATA, the ALPHA has neither INPUTS nor 0U1PUTS.

In general, an ALPHA without INPUTS is one which operates on the sys-

tem as a whole, rather than on information retained by the DPS. For example,

ENGAGEMENTJNITIATION and TERM_ENGAGEMENT accomplish their purposes by the

occurrence of the appropriate message; only the value of the selection var-

iable (COMMANDID) is required to initiate them, and those ALPHAs execute

independently of the state of the global data base.

In general, an ALPHA with INPUTS but without OUTPUTS is a signal of

a specification problem. Trivially, the only reason for acquisition of DATA

for processing is that it may effect some generation of DATA for OUTPUT. We

have not yet been able to construct a valid case for an ALPHA which must

3-45

. .•
- ■ ~r--<i—- --

t

ALPH«: TRACK.TNITIATF.
INPUTSJ

n/irA:
DATA:
nATA:
OATA:

OUTPUT«;:
OATA:
OATA:
HATA:
DATA:
OATA:
DATA:
DATA:

HO_ir)

I^TTlAl_STATf:

INTTTAL_C0VA^IAMCE
CLorK_riMF,

iMAOE.Tn
STATE
COVAmA^CF
ENTPY^TlMp
TlMF_nP_iNITlATI

,
0N

TPACiC »AT»-
WAVFFÖOM,

Figur« 3-12 RSL Initial ALPHA Entry

•

3-46

.^taBl^v
——^.^-

i

•

accept INPUTS but is not required to provide OUTPUTS.

Since the work described in 3.3.3 and 3.3.4 often proceeds in parallel

with that of 3.3.1, we will address those topics at this point. We will

return to a more detailed look at RADX evaluation in 3.3.5.

3.3.3 Hierarchy Transitions

In addition to the elementary data relationships, each ALPHA may

modify DATA within hierarchies in a variety of ways. Given the engineer's

concept of the action of the ALPHA, it is possible to express its action on

the hierarchies in terms of the RSL directives: CREATES, DESTROYS, SETS,

and FORMS.

There are two fundamental generative operations that an ALPHA may

express: CREATES and FORMS. They declare the need for a new instance of a

named ENTITY_CLASS, or for a named MESSAGE, respectively. In response to

either directive it is required that the specified INITIALJ/ALUEs for all

associated DATA with such values be assigned. This is done automatically

when REVS acts upon an INITIALJALUE definition. If an INITIALJALUE is

not defined, REVS will assign a default value according to the TYPE of the

DATA. These values are (0, 0.0, FALSE, first defined value in the RANGE)

for the respective types (INTEGER, REAL, BOOLEAN, ENUMERATION). Once the

DATA associated with the instance are initialized, they may be assigned

current values by assignment statements within the BETA.

When an instance of an ENTITY_CLASS is CREATED, it will normally be

SET by the generating ALPHA. Otherwise, only the DATA and FILEs common to

all types in the class can be defined. As the instance persists in the

system, its type will evolve (i.e., be SET to a different type). The ALPHAS

in which such changes are effected are normally obvious from the R_NET. In

each case, such an ALPHA SETS ENTITY TYPE to the appropriate ENTITYJYPE

name.

For example, the discussion, in 3.3.1, of the ALPHA named TRACK_

INITIATE revealed that the ALPHA performs all of the actions above. It

FORMS the MESSAGE named TRACKJNITIATION. Also, it first CREATES an in-

stance of ENTITY_CLASS IMAGE, then SETS the instance to ENTITYJYPE IMAGE_

IN_TRACK. Figure 3-13 shows how these declarations are written in RSL.

3-47

-'■■—— -•

, i -„.,.„'; -. ■ -
rw^-i». —-;;;<.;•;

«LOH«: IP4CK.INITIATF.
f OPMS*

MESSAGE: TRACK.INITUTION.
CPFATFS:

FNTITY.CL&SS: I^AßE.

PNTTTY.TYPE: iMAßF.IN.TRACK, 0

t

Mgurt ,.» RSL A^Uionil ALPHA tntry

3-48

iPMi mpi

When there is no further need for the DPS to retain data related to a

specific instance of an ENTITY_CLASS, or to be aware of the existence of the

instance in the external world, the (instance of the) ENTITYjCLASS can be

DESTROYED BY an ALPHA. The disposition of a PULSE in the TLS depends on

whether it is a LOST_PULSE or a RETURNEDJULSE. For a LOST_PULSE, the

instance is DESTROYED (no longer needed) after it has been accounted for

in the ALPHA named ALLOCATE_AND_CONTROL_RESOURCES. For a RETURNED_PULSE,

the instance is not destroyed until it has also been accounted for in the

ALPHA named SUMMARIZEJJSAGE. Note that, in this case, the instance of

PULSE can be DESTROYED in either of the two ALPHAS, but not before it has I
been accounted for in both. This Ijs because the R_NETs in which the ALPHAs

reside execute independently of one,another, and no specific sequence is

otherwise required.

C

•

3.3.4 Further Data Definition

Through the previous work many, if not most, of the DATA in the system

have been named, and their relationships with ALPHAs have been established.

In order to complete the requirements specification and construct an execut-

able simulation, however, the "attributes" of the DATA must be defined.

The three principal attributes are LOCALITY, TYPE, and USE. In

general, the user will have a fair idea of these properties when he first

declares the DATA element. His concept is further sharpened when he sees

how the ALPHAs utilize the DATA.

3.3.4.1 Locality

DATA and FILES may have different required accessibility in the sys-

tem. The range of accessibility of an item is denoted by the attribute

LOCALITY, which may have values of LOCAL or GLOBAL. Items of DATA or FILEs

which are LOCAL are associated with the R_NETs in which they are used and

are unknown outside of these R_NETs. Implicit in this definition is a con-

cept of permanence: LOCAL DATA exist only during the invocation of the

R_NET to which they are LOCAL. They are created when the flow token is

generated at R_NET ENABLEment and cease to exist when the flow token leaves

that R_NET. ALPHAs which use LOCAL DATA and FILEs may appear on more than

one R NET; it is possible for a single DATA item or a FILE to be LOCAL to

3-49

-'■—~ -•

MW"*M«f mm

I u I

more than one R_NET. These are different instances of the DATA or FILE

which have no relation to each other, each has a completely separate exis-

tence, controlled by the R_NET in question.

GLOBAL DATA and FILES are accessible by more than one R_NET and exist

over more than one R_NET invocation. DATA and FILEs which are ASSOCIATED

with an ENTITYJTPE or an ENTITY_CLASS are tied to the entity instances to

which they belong. They are created when the instance is CREATED and last

until the instance is DESTROYED. Items which are not ASSOCIATED with any-

thinr are permanently in the global data base, and may exist throughout the

duration of the system.

Thus, DATA and FILEs which belong to an interface data hierarchy are

implicitly LOCAL. DATA and FILEs associated with an entity data hierarchy

are implicitly GL0B/1L. DATA and FILEs not associated with either type of

hierarchy have no implicit locality. Even if the locality is not explicitly

defined, an item exists in the data base at all times, accessible to the

R_NETs, but in an "undefined" state. Failure to declare LOCALITY can pro-

duce weird consequences later, if the element involved has no implicit

locality. On the other hand, declarations are not needed if the locality

is implicit. At best they are redundant, and at worst they are misleading

because REVS overrides any declaration in the ASSM which conflicts with the

implicit locality.

While the user may clearly identify which DATA and FILEs need LOCALITY

declarations, and which do not, it is easier and less risky to use a RADX

procedure to do this. One such procedure is discussed in 3.3.5.

For the remaining items which need a LOCALITY declaration, the user

should consider the source of the item. If an independent DATA item or FILE

is not OUTPUT FROM some ALPHA on an R_NET previous to its being INPUT TO

some other ALPHA on that net, It certainly cannot be LOCAL to that R_NET.

If the item is OUTPUT FROM an ALPHA on some other R_NET, the item is cer-

tainly GLOBAL unless an error has been made in the INPUTS and OUTPUTS defi-

nitions. In many cases the correct locality is obvious. The inability to

find a source for an independent item on any of the R_NETs Indicates a

specification deficiency.

o

3-60

._■ .. i, ■ m

1

If a DATA item or FILE is OUTPUT FROM an ALPHA on a net other than

that which uses the item as input, the indicated LOCALITY is GLOBAL. If

no other R_NET generates the item, then the origin of the item is on a

previous execution of the R_NET which uses it.

If the ALPHA which OUTPUTS an item does not clearly precede the ALPHA

which INPUTS it, care must be taken to ensure that the item has an initial

value. The default values assigned by REVS in the absence of an INITIAL_

VALUE declaration were described in 3.3.3. If these are unacceptable, the

user must declare the correct INITIAL_VALUE. Note that "clearly precede"

in the context above means that the ALPHA which OUTPUTS the item is either:

1) before the ALPHA which INPUTS it, on the same path within an R_NET, or

2) precedes the ALPHA which INPUTS the item on a single path linked by

enabling EVENTs.

3.3.4.2 Type and Range

Other details about DATA must be known for purposes of simulation.

BETAs and GAMMAs are executable code which are meaningful only if more is

known about the DATA than should be stated as a requirement. In addition,

a hierarchy of DATA may be stated as a requirement, but a functional simu-

lation (using BETAs) may employ DATA only part way down the hierarchy. That

is, the simulation may use one DATA to represent a part of an entire hier-

archy. The characteristics of this summarized DATA must be stated for the

simulation to execute. Since an analytic emulation (using GAMMAs) might

not employ the same DATA, the type information for BETAs may be different

from that for GAMMAs. The only DATA that can be used in the BETAs and

GAMMAs and have their values communicated between ALPHAs, however, are those

whose TYPE has been defined.

The attribute TYPE contains the necessary information for typing of

the DATA. This attribute may have values REAL, INTEGER, BOOLEAN, or ENUMERA-

TION. A DATA item with type enumerated corresponds closely to one with a

scalar type in PASCAL; that is, it has values which are denoted by identi-

fiers. The legal values for ENUMERATION types are given in the RANGE attribute.

3-51

ftiMWuiJiiiwim—ii ^ j** ■■■ ';• . ..-.I'V,

■

The TYPE declared need not correspond to that of the actual data In

the real DPS. Rather, It should be chosen to reflect the purposes of the

functional and analytic simulations, and the fidelity required in those

simulations. For instance, in the real DPS, unique alphanumeric text strings

may be used to identify objects. If these are an open set, we cannot repre-

sent them by a DATA element with TYPE; ENUMERATION because that defines a

closed set. However, for purposes of simulation, the DPS property of interest

is the ability of the DPS to distinguish between unique identifiers. Thus,

by defining the identifier as TYPE: INTEGER, and representing each object

or class of objects by a unique integer value, we have an adequate repre-

sentation for our purposes.

Similarly, in TLS, identifiers such as HOJD, IMAGEJD, and RADAR_

0RDER_ID are represented by integers. In the real TLS some symbolic code

convention, which is irrelevant to us at this stage, would be used. In

like fashion, message identifiers such as COMMAND__ID which form a closed

set are represented as DATA with TYPE: ENUMERATION. The values defined

are for explanatory purposes. The values in the actual TLS would :erta1nly

be different.

Since the appropriate TYPE for DATA is strongly dependent on its USE,

the choice may be deferred until the USE has been determined.

.

3.3.4.3 Use

Further qualification of the use of a DATA item in the simulation

is given by the attribute USE. The value of this attribute may be BETA,

GAMMA, or BOTH denoting that the data item is the lowest level in the data

hierarchy which will be used in the corresponding simulation.

Frequently, even the first declaration of a DATA item makes clear

Its USE in the system. For example, if the element is known to correspond

to a single unit of information (bit, byte, or word) In implementable soft-

ware, then It Is probably to be used in BOTH beta and gamma models. Nor-

mally, a selection variable will be in this class. Similarly, it Is likely

that an Item which INCLUDES others in the detailed modeling, but which may

be treated as a whole for functional modeling will have USE:BETA. It Is

unlikely that any element with USE restricted to GAMMA will oe recognized

at this stage of development, since Its declaration would be primarily In

3-52

! ,»

■- ■

•

t

support of analytic simulation; the exception would occur if a highly de-

tailed interface specification gave low-level DATA definitions, for which

higher levels would suffice in a functional model.

For example, in the TLS definition, INITIAL_STATE is a single DATA

element with USE:BETA. In the external world "state" is defined by a posi-

tion vector, a velocity vector, and perhaps an acceleration vector, each

with three components. Such detail is not needed for the functional simu-

lation. However, an analytical simulation has need for these elements.

Thus, eventually each of the components will be defined, with USE:GAMMA.

Similarly, for the functional simulation, INITIAL_C0VARIANCE can be repre-

sented by a single element with USE:BETA. Later, its matrix components can

be defined with USE:GAMMA when they are needed for analytic simulation.

3.3.4.4 Values

Values are the ultimate object of defining DATA. At the lowest level

in a hierarchy of DATA the requirements engineer may specify the attributes

UNITS, MAXIMUMJALUE, MINIMUMJ/ALUE, iNITIAL_VALUE, and RESOLUTION. The

attribute UNITS is given separately from the various types of values, both

to maintain consistency with their specification and to enable requirements

engineers to indicate the minimum possible information about a DATA'S value,

its UNITS. In nearly all cases an engineer will know whether he is talking

about milliseconds or microseconds even if he is unsure of the value. Sepa-

rating UNITS from the values enables him to provide the best information that

he has at the initiation of defining a DATA item.

Since the attribute? UNITS, MAXIMUMJ/ALUE, MINIMUMJALUE, and INITIAL_

VALUE are not vectors, the definition of different UNITS and values of a DATA

set above the lowest level in the hierarchy is not possible. RESOLUTION

describes the required maximum value of the least significant bit for the DATA

in units described in the UNITS attribute.

3.3.5 Evaluation of the ASSM Using RADX

The Requirements Analysis and Data Extraction (RADX) function of REVS

is the tool used by the requirements engineer to observe the state of the

Abstract System Semantic Model. RADX provides commands that allow the per-

formance of several functions:

3-53

ÜWi
"MMaiMHWnHHIBM

■■■ ■ ■

f

identification and listing of elements in the ASSM that do
or do not meet some criterion.

listing of ASSM elements in such a manner as to be suitable
for inclusion in requirements documents.

listing of RSL element, attribute, and relation definitions.

analysis of the ASSM to identify requirements that are
ambiguous or inconsistent.

The requirements engineer should actively use RADX to extract specific

data for analysis and to detect inconsistencies and omissions in the ASSM,

This capability is also used by technical managers to evaluate progress of

the development activity, and by independent analysts who may be assigned

to verify the work 3f the requirements engineer.

The following subparagraphs discuss typical uses of RADX in evaluating

the work done in Phase 3, and in identification of work remaining to be done.

These examples are not meant to be comprehensive, nor are they the only way

to do the task. A comprehensive catalog of RADX procedures would be a very

thick document, and, there are many ways to do a specific extraction task

effectively. Other examples can be found in the REVS Users Manual. Our

purposes here are merely to suggest some of the uses of RADX, and to encourage

the user to creatively use these facilities In his work.

3.3.5.1 RADX Evaluation of Data Origin and Usage

A DATA item may be entered into the data base in any of the following

ways:

1) It may be OUTPUT BY an ALPHA;

2) It may be INCLUDED IN a DATA OUTPUT BY an ALPHA;

3) It may be CONTAINED IN A FILE OUTPUT BY an ALPHA; or

4) It may MAKE a MESSAGE which is PASSED BY an INPUTJNTERFACE.

(Let us include in the last category DATA INCLUDED in DATA which MAKES such

a MESSAGE and DATA CONTAINED IN a FILE which MAKES such a MESSAGE.)

We wish to extract exceptions to the above rules, since they consti-

tute apparent cases of 'creative memory' — data extractable from the global

data base which never need to be entered. An obvious and legitimate case of

creative memory Is a constant with a defined INITIALJ/ALUE; in fact, DATA

constants are properly defined in just such a manner. But any non-constant \

3-54

"%.' -
mimiiiinii mrn

"- ■ M— w* - -~*^"*- zzs -.,,_..", •■ ■

'- ». 3- . W»t™ * ,.,„^.-,„..,.^-,,.^ ..„.,

i'-f

f
data item which fits in none of the above categories is an apparent error,

and worthy of detailed analysis. (Note that a DATA element which is never

INPUT TO an ALPHA and which does not MAKE a MESSAGE which is PASSED BY an

OUTPUT_INTERFACE is also worthy of scrutiny, and may be similarly analyzed

at this itage. Among the DATA which will properly be detected at this step

are those REFERRED by an R_NET-- e.g., selection variables.)

With the aid of the hierarchy definitions in 3.2.5 we can construct

RADX procedures to isolate the DATA described above. First we will define

RADX commands which are used in both cases:

SET INALPH - DATA THAT IS INPUT BY ALPHA.

SET OUTALPH - DATA THAT IS OUTPUT BY ALPHA.

The additional commands below will provide a listing of DATA INPUT TO

an ALPHA which does not have an INITIAL VALUE, and is not in a MESSAGE

PASSED BY an INPUTJNTERKACE, and which is not OUTPUT FROM some ALPHA on

some R_NET.

SET INMSG = ALL IN HIERARCHY liirACE.

SET INDATA = INMSG AND DATA.

SET INOUT = INALPH MINUS OUTALPH.

SET INOUT = INOUT MINUS INDATA.

SET INOUT = INOUT WITHOUT INITIALJ/ALUE.

LIST INOUT WITH HIERARCHY DATUM.

If, instead, we use the commands below, we will get a listir.q of DATA

which is OUTPUT from an ALPHA and not INPUT TO an ALPHA and not in a MESSAGE

PASSED BY an OUTPUTJNTERFACE.

SET OUTMSG = ALL IN HIERARCHY OUTFACE.

SET OUTDATA = OUTMSG AND DATA.

SET OUTIN » OUTALPH MINUS INALPH.

SET OUTIN = OUTIN MINUS OUTDATA.

LIST OUTIN WITH HIERARCHY DATUM.

Doubtlessly, the imaginative user can invent more efficient and

powerful procedures to do the same task, as well as others which investi-

gate other aspects of data usage. The flexibility of RADX command capa-

bility allows many valid approaches to the same goal.

3-55

UM
■.'.Ji.Kv'v.^- ■' -™^'r/ ■ mgggf

,).:),rj,^ KAÜX Evaluation of File Activity

In 3.3.1 we dis.,.ssed the interpretations to be made when a FILE is

INPUT TO and/or OUlPüT FROM an A.PHA. RAUX commands can be used to isolate

various INPUT/OUTPUT combinations for verification. The following are

useful.

SET A - FILE WITH INPUT.

SET 13 = FILE WITH OUTPUT.

Al C = A OR b.

SET U = FILE MINUS C.

SET E - B MINUS A.

SET F -- A MINUS B.

SET G = A AND B.

Set i) consists of FIEEs whicn are- neither INPUT TO nor OUTPUT FROM an

Al PHA.

Set L consists of FILEs which are only OUTPUT FROM some ALPHA. We can

assume that additions were made to tne FILE for some purpose, "ihe only valid

purpose, other than for INPUT TO some ALPHA, is to MAKE an output MESSAGE.

The following RAUX commands provide a listing of the remainder which do not

MAKE an output MESSAGE and which should be checked for errors.

SET h = E MINUS OUTMSG.

LIST II.

Set F consists of FILEs which are only INPUT TO some ALPHA. This indi-

cates that the FILE instances are accessed, and possibly deleted, within the

ALPHA. . Since the FILE is not OUTPUT FROM an ALPHA, it cannot originate with-

in the UPS. Therefore, it must appear in an input MESSAGE. The following

RAUX commands provide a listing of the remainder which do not MAKE an input

MESSAGE and which should be checked for errors.

SET I = F MINUS INMSG. "-■-..._

LIST I.

Set G consists of FILEs which are both INPUT TO and OUTPUT FROM some

ALPHAS, not necessarily the same ALPHA. These FILEs, together with the

ALPHAs which operate on them, can be extracted by the following commünds.

0

lr
3-56

MH
iMi.imp"-»-* ••**■*%• *isf**■■*■»''>**••• ^sr**-^™

r
■

■

t

i

APPEND FILE INPUT, OUTPUT.

LIST G.

This listing should be examined to ensure that the FILEs are operated

upon as intended. Particular attention should be paid to ALPHAs which both

INPUT and OUTPUT the same FILE. It is these ALPHAs which either modify the

instances within a FILE, or add new instances when an appropriate one cannot

be found.

3.3.5.3 RADX Evaluation of Entity Activity

It is also useful to verify that ENTITY_CLASSes and ENTITYJTYPEs are

manipulated appropriately within the system. Each ENTITY_CLASS must be

CREATED BY some ALPHA. Each ENTITY_CLASS should be DESTROYED BY some ALPHA.

If it is not destroyed, there must be a valid reason for retaining the asso-

ciated data. Further, each ENTITYJ"YPE within an ENTITY_CLASS must be SET BY

some ALPHA. The members of the following sets are apparent deviations and

should be examined.

SET A = ENTITY_CLASS WITHOUT CREATED.

SET B - ENTITY_CLASS WITHOUT DESTROYED.

SET C = ENTITY TYPE WITHOUT SET.

The following hierarchy is useful to determine the actions on each

ENTITY_CLASS in the system.

HIERARCHY ENTITYCHECK =

ENTITYJCLASS CREATED BY ALPHA

ENTITY_CLASS COMPOSED ENTITYJTYPE

ENTITY_TYPE SET BY ALPHA

ENTITY_CLASS DESTROYED BY ALPHA.

The following RADX command will provide a structured listing of each

instance of the hierarchy suitable for further analysis.

LIST ALL WITH HIERARCHY ENTITYCHECK.

3.3.5.4 RADX Evaluation of Data Attributes

Data extraction can be of major support in development of the execut-

able description, although it is not a major contributor to assessment of

the result. The fact that RADX cannot penetrate the contents of a BETA to

3-57

determine its consistency with declarations of relationships and attributes

is of little significance, since the consistency and completeness are

thoroughly analyzable with the static analyzers, and since the crucial test

of simulation generation is then executable.

One of the key operations at this stage of specification development

is defining the LOCALITY, USE, and TYPE of all DATA required for functional

simulation. LOCALITY is the easiest of the attributes to specify:

1) Using the definitions of 3.2, LIST ALL WITH HIERARCHY
ENTITY generates a collection of GLOBAL DATA;

2) Using those definitions, LIST ALL WITH HIERARCHY INFACE and
LIST ALL WITH HIERARCHY OUTFACE generates a collection of
LOCAL DATA;

3) LIST B WITH HIERARCHY FILES generates the collection of
DATA CONTAINED IN FILEs which are not linked to higher levels.
Since each such file is inherently either local or global in
scope, all CONlAINED DATA have the same LOCALITY as their
parent; and

4) LIST D WITH HIERARCHY DATUM identifies the top level of
DATA which are not linked into higher levels. Each such
item is then assigned a LOCALITY, which is also the value
assigned to any DATA item INCLUDED in that top level.

Since the system provides an override of any LOCALITY declaration for ASSO-

CIATED DATA or those which MAKE a MESSAGE, any LOCALITY provided by the user

would be at least redundant, and at worst misleading. Therefore, it is

recommended that each DATA item and FILE generated by (1) and (2) above be

checked to ensure that no LOCALITY is declared. Similarly, it is best to

declare the LOCALITY for each FILE derived from (3), and then to omit LOCALITY

for each DATA item obtained. Finally, each DATA item obtained in (4) is

assigned a LOCALITY, and the same LOCALITY is assigned to each DATA item

included in it.

Data extraction also supports assigning USE tu the DATA items. Define

SET A = DATA WITHOUT INCLUDES. Each item in that set must have USE GAMMA

or BOTH. It is given USE BOTH exactly if it is to be a part of the BETA

model of some ALPHA. For each item with USE:BOTH, no DATA above it in the

hierarchy can have a USE assigned. Note that USE:B0TH and USE:GAMMA may

be applied only to the lowest level of DATA defined. Once it is determined

that a given lowest-level DATA item will not be included in the functional

model, an item above it in the hierarchy must be assigned USE:BETA. That

3-58

•

t yi

""J"—"»—.„

■■

i item may be anywhere above the one with USE:GAMMA, except that it cannot

also INCLUDE (either directly or through a chain of INCLUDES) any element

with USE:BOTH.

By defining a SET A = DATA WITH USE, the engineer determines the items

requiring TYPE. It is not mandatory at this stage to TYPE DATA which are to

be used only analytically, so that the subset, required for functional simu-

lation can be obtained through SET B = A WITHOUT USE = GAMMA. Through

examination of the STRUCTURES and BETAs, the TYPE of each such item is

defined, and enumerated DATA are also assigned RANGE.

Note that it is at least misleading, and sometimes likely to induce

errors, to define attributes for elements which do not require them. Thus,

a LOCALITY:LOCAL declaration for an item ASSOCIATED WITH an ENTITY_TYPE

would be overridden by REVS, but would be entered into the ASSM and would

appear to the reader of the specification to control the DATA item. Such

a condition would clearly degrade legibility of the document, and should

be avoided. The data extractor can be used to determine if any over-

specification of this sort has been attempted. (Note .hat the ASSM for

TLS as documented in the Appendices includes such cases. At the time of

it: development, the capabilities of the extractor were more limited than

at present, and manual methods were employed to complete the data base.)

I

3.3.6 Summary of Phase 3

This section has outlined a general procedure for completing the

definition of the functional requirements for a DPS. The following steps

were done:

t The data transactions of each ALPHA were defined.

• The hierarchy transitions performed hy each ALPHA, if
any, were defined.

§ The user has redefined ALPHAs into SUBNETS, has added
ALPHAS, and has modified R_NLT STRUCTURES if the Phase
2 baseline was inadequate.

• The user has evolved a clear concept of the processing
done within each ALPHA, as a starting point for develop-
ment of BETAs.

t The definition of all necessary DATA and FILE attributes
has been completed, to the extent possible without
developing BETAs and GAMMAs.

^

3-59

I

• The completeness and consistency of the ASSM has been
analyzed and verified with the aid of RADX capabilities.

We have reached another milestone. The definition of the functional

requirements is hypothetically complete. In Phase 4 we will develop the

executable simulation needed to verify that assertion.

3.4 PHASE 4 - DEVELOPMENT OF FUNCTIONAL MODELS

Specification of the functional requirements entails development of

functional models which define the outputs of processing in terms of its

inputs. In essence, the only things known to a data-processor specifica-

tion are the contents of its interface messages; all other information

should be defined within the specification in terms of mathematical opera-

tions on the input data stream. Such a definition is in effect a model

of the processing operations required, and with sufficient fidelity would

provide the analytic models of Section 4. Where the model reflects only

the gross characteristics of the transformation required, 1t may be

said to be functional; such models in REVS are termed BETAs. The BETA and

GAMMA representations of the DPS must be driven by a system level simulator

which SREM assumes to exist, due to the prior need for such a simulator in

deriving the originating specifications. The TLS example presumes exis-

tence of ä System Environment and Threat Simulator (SETS).

3.4.1 Betas

A BETA is a PASCAL procedure which models the transformation of the

DATA ani FILEs INPUT 10 an ALPHA into the DATA and FILEs OUTPUT FROM it.

The function of a BETA is to implement the data flow required for func-

tional simulation in order to determine the sufficiency of a functional

specification. To that end, the fidelity of each BETA is dependent on the

capabilities required of the functional simulator, and in particular on tiie

data contents determined for SETS.

Generation of a BETA is more or less creative depending on the fidelity

desired. At the simplest level, assignment statements may be employed in

place of complex mathematical operations. In TLS, the ALPHA: UPDATE_STATE

is modeled by assigning to STATE (a DATA item ASSOCIATED WITH ENTITYJTYPE

IMAGE INJRACK) the value of the DATA returned by SETS. In an analytic 1

3-60

-ip—-,..

■

%

V

rrodel, the equivalent operation would be execution of a high-order Kaiman

filter. The simple model is appropriate since it follows the logical con-

nectivity of the system data flow, while providing a means for SETS to acti-

vate the required branches of the R_NETs.

One of the ALPHAs of TLS is REDUN_DETERMINATION. It embodies the

requirements for identifying two images as redundant if their state esti-

mates are close enoi,gh (relative to their uncertainties) for them to be

considered duplicate detections of the same object. The real processing to

implement such a requirement would have to select at least a subset of all

images then being tracked for state comparison, then to determine redundancy

by an appropriate algorithm. For a functional model, it is sufficient to

define the USE of STATE (a multielement vector in reality) as BETA and its

TYPE as REAL. Then two instances of IMAGEJNJRACK would be redundant if

their values of STATE were equal. The corresponding SETS activity is

implemented by having the DATA returned in the radar message selected to

give the required probability of redundancy.

The BETA for REDUNJDETERMINATION is given in Figure 3-14.

It scans all instances cf IMAGEJNJRACK (the ENTITYJYPE) to find any

value of STATE equal to that of the instance to which the current return

is related. If redundancy is found, the REDUNDANTJMAGE DATA is assigned

TRUE; otherwise, it is FALSE.

I

3.4.2 Local Data

In developing the BETA for each ALPHA, the requirements engineer also

pins down attributes about the DATA flow. As already noted, he will define

some high-level DATA as being sufficient for functional modeling, and will

give them corresponding attributes of TYPE and USE. Similarly, he will

specify USE:B0TH for DATA required in a functional model at the same level

of fidelity as in an analytic model. In addition, he will identify some

DATA required for intercommunication of ALPHAs on a single R_NET during a

single transaction (enablement) of that net. For example, the STATE of the

IMAGEJNJRACK corresponding to the current return must be compared in

REDUNJETERMINATION with that of all other instances. Therefore, a DATA

element may be defined as OUTPUT FROM ALPHA:UPDATE_STATE which is the

CURRENT STATE. That definition is needed since the current instance of

3-61

MBÜ

.:■..-:

"VAP ^ : T^iTF^FW:
-' F f-;] M < : = n •

f-Oty -"^CH [WCI^P_1^, T '/(,"< no

[F SJA T =f MO^K^l _ , T \ Th TH^N x : - if ♦ j :

c:FLtrT FTPST PvOl ? ' Afii-_ I rj_TKfiCK SJCH TH<iT
I ', ftr.»--_rO-7 A-vwt- |_] i;

J(- iM'inArgT_f' Af-f : r (> -. i) §

Figure 3-14 RSL BETA Entry

3-62

I
■ ■ ■

3-63

•

IMAGEJNJTRACK (with which a value of STATE is associated) changes during

execution of the ALPHA:REDUN_DETERMINATION. Therefore, the DATA:CURRENT_

STATE is declared, and given LUCALITY:LOCAL, TYPE:REAL, and USE:BETA. Since

the value of the state vector is also an output for recording, and since a

MESSAGE uses only LOCAL DATA, the element may be the same as the one which

MAKES the MESSAGE:STATE_UPDATE which is also required from that R_NET.

RADX procedures as discussed in 3.3.5 are of continuing use in analyzing

the correctness of the DATA definitions. The user is encouraged to develop

his own procedures which are meaningful to his particular project.

3.5 TRACLABILITY

Traceability is a feature of the specification supporting its

management, rather than one required for its technical quality per se.

Therefore, the requirements for traceability are developed in the manage-

ment volume, and are addressed here only in terms of their mechanical

entry.

3.5.1 Originating Requirements

The originating requirements for a software specification are most

commonly contained in higher-level specifications. In general (depending

on management decision) each identifiable software requirement in each

higher-level specification will be called out as an ÜKIGINATING_REQUIREMENT

in the ASSM. The DESCRIPTION attributed to an ORIGINATINGJEQUIREMENT may

be a literal excerpt of the source, or may be an interpretation, again at

management discretion. Note that ORIGINATING_REQUIREMENTs in REVS do not

trace to one anottir; thus, the lowest level of requirements to which a

DECISION or specification element traces should be entered as the ORIGI-

NATINGJEQUIREMENT.

3.5.2 References

•

There may be sources of information which define specifics of the

software requirements, but which are not specifications in themselves. For

example, a table of constants, or a book defining a standard atmosphere

model may be referenced in the source specifications or applied by the

requirements engineer in developing the software specification. Such a

REFERENCE is also recorded in the ASSM, since it EXPLAINS some feature of

M,.ß.,:m»"m"". .i!,,iww.r»HJ!..1— "

the required processing. Note that a REFERENCE may be changed during

development of either the specification or the software; when such a

change occurs, its impact on the specification may be followed through

the EXPLAINS relationship.

3.5.3 Decisions

As was noted in 3.1.5, the process of developing the DPS requirements

may expose system issues which cannot be resolved immediately in a formal

manner, but which may have significant impact on the direction of further

work. Each such issue is recorded in the ASSM as a DECISION which TRACES

FROM the ORIGINATING_REQUIREMENT{s) eitner directly or through other

DECISIONS. As each issue is encountered it should be given a DECISION

name, and entered in the ASSM with at least its key attributes: a statement

of the PROBLEM, the recognized ALTERNATIVES, ar,d the CHOICE among them which

was made to allow work to proceed. When the CHOICE is reviewed by system

engineering, its correctness can be confirmed, or the implications of re-

vising it can be assessed through analysis of those elements which TRACE

FROM the DECISION. Paragraph 3.1.5 gives an example of the input needed

to state one of the TLS issues. %#

3.5.4 Relating to Sources

The relationships TRACES and EXPLAINS have been defined to link

requirements to their sources. Each element of the ASSM should be TRACED

TO its ORIGINATING_REQUIREMENT(s) either directly or through DECISIONS

which may be TRACED themselves. In general, the ORIGINATING_REQUIREMENTs

may be entered into the ASSM before their traceability is developed (i.e.,

before any of the elements have been defined). As the R_NETs are built and

as the other elements are entered, their links with any ORIGINATING_REQUIRE-

MENT may be recorded through the TRACES relationship. Whenever a DERIVATION

is encountered, it should be entered and TRACED TO its source.

Chronologically, it is likely that the first entries made into the

ASSM will be the 0RI6INATIN6_REQUIREMENTsi some REFERENCES may ulso precede

development of the R_NETs. As elements are developed, DECISIONS and

additional REFERENCES will be recorded, and at least some TRACES and

EXPLAINS relationships will be provided. Before publicati)n of the speci-

fication, management may require element audjit to confirm some level of

3-64

MM MINI

-».-,..—.*(;., , .^

t completeness of tracing; throughout development of both the specification

and the resulting software, the linking should be monitored to track, in

the specification, evolution of requirements. Note that it is good prac-

tice in requirements engineering to explore, through the data extractor,

the impact of any projected modifications to requirements. Particularly

at the terminal, it is convenient to query the ASSM to the effect: What

if the DECISION (name^ is modified? It would be accomplished LISTING ALL

WITH an appropriate HIERARCHY that TRACED TO that decision, then examining

the attributes of each element that was so related. Judicious engineering

would then focus on the requirements with the least impact when looking at

the set which might be altered to reflect a change in the software environ-

ment (e.g., the threat).

€

3.6 INFORMATIVE MATERIAL

Sections 3.1 through 3.4 have shown the development of the technical

content of the ASSM from the entry of the kernel through recording func-

tional models. In addition to such mandatory material, there is a family

of supportive information which might be recorded for any element. Charac-

teristic of that family is the DESCRIPTION, an attribute which allows an

English-language text to be entered (other languages might be used except

for restrictions due to character sets) to explain the intent of the

element. Note that informative material is not constraining on the pro-

cess designer, and is not, in fact, a require^ient subject to test; it is

merely supportive of communication between the requirements engineer both

his peers and the process designer. The need for any informative attribute

and the auditim of its entry are options for project management, and are

discussed in the management volume,

f

3.6.1 Description

A text string of arbitrary length may be entered to describe any

element of the ASSM under the attribute DESCRIPTION.. Even where the element

carries a self-explanatory name, or where it has another attribute formally

specifying it, a DESCRIPTION is usually valuable. For example, the IMAGE_ID

is as simple a concept about an IMAGE as can be promoted. Nevertheless, it

would be useful to describe it as being assigned from the HOID of the ini-

tiation message, and as being embodied also as the TARGETID in the ENTITY_

3-65

I -^
—■"

CLASS PULSE. The linkage among the elements is defined in the BETAs of

appropriate ALPHAS, of course, and the DESCRIPTION is not binding. But

following all of the references to that DATA item to find the meaningful

assignments is tedious at best, where the DESCRIPTION is easily absorbed.

3.6.2 Synonym

A synonym may be declareci and EQUATED TO any other element for the

convenience of the engineer. Frequently, the SYNONYM will be a short name

for a frequently referenced item, so that at least some of the references

are simplified; occasionally, the naming conventions imposed by the language

will prompt the use of a cryptic element name, so that an explanatory

SYNONYM is desired. The relationship ABBREVIATES may be regarded as equiva-

lent to EQUATES; it is an artifact of early REVS design.

3.6.3 Authorship

In the current REVS, there is an attribute ENTERED_BY which permits

the author of information about an element to record his name and the date

of entry. If required, that operation could be automated, so that the'

attribute would become a log of changes made, with the entry provided by

the system whenever a value or relationship was altered.

3.6.4 Complementary Relationships

Each RSL relationship defines a connection between two elements;

since it is transistive, it has a complement which simply reverses the

subject and object. When information is extracted from the ASSM, both

directions of the relationship are derived from a single link; thus, both

the relationship and its complement are extracted, and redundant but

absolutely consistent information is obtained. Since consistency is

assured, redundancy is constructive in informing the user about all

relationships on an element under examination.

3.6.5 Structural References

In the structure segment, an R_NET makes use of other elements.

Implicitly, it has a relationship to each such element which appears on

its STRUCTURE; that relationship is termed REFERS, and is implicit in use

of the data extractor (RADX) of REVS. The relationship and its complement

3-66

9

MI«A-

m—^~

■ ■ .

r f

(

•

are visible to the user in the RADX output, but are entered automatically

and implicitly through STRUCTURE declaration, not through the conventional

explicit declarations.

3.7 ANALYTIC MODELS

In order to support analytic simulation, detailed models of data

transformations must be provided in the ASSM. For each ALPHA, that model

is entered as its GAMMA attribute in the form of a PASCAL procedure.

In general, an analytic model will be an idealized method of per-

forming the operations required by the ALPHA. Typically, it will be un-

realizable in a real-time system due to its size or complexity. Since the

requirements statement is independent of the machine on which its implemen-

tation is to execute, real-time constraints do not apply, and the idealized

algorithm is suitable for the existence proof that the analytic simulation

is to provide.

Another useful way of looking at an analytic model is to begin with a

TEST of a PERFORMANCE_REQUIREMENT. In general, such a TEST wUl be a func-

tion of the outputs of processing (MESSAGES and DATA entered into the global

data base) relative to DPS inputs (MESSAGES). In a mathematical sense, the

TEST might be inverted to provide an algorithm for converting the inputs to

the required outputs. If that inversion is partitioned into the ALPHAS along

the processing path, it might become the set of GAMMAs needed at this stage.

For example, if the requirement is that a specific differential

equation is to he satisfied, the equation itself serves as the TEST (see

Section 4), while the GAMMAs for the appropriate ALPHAs provide one means

of solving the equations. If we did not require that a set of GAMMAs be

generated and validated, we could not confirm the correctness of the speci-

fication. Thus, it is simple to specify a perpetual-motion machine (the

power available at the output port equals or exceeds that supplied at all

input ports), but very difficult to provide a proof of one's existence.

The GAMfiAs may, in principle, be generated in exactly the same way

as the BETAs. In practice, only the simplest will be treated in so light

a manner; the majority of the ALPHAs will require modelling by a team of

experts in the particular disciplines required for that processing. For

3-67

, ,.„

1

■

example, the ALPHA:UPDATE_STATE has a very simple BETA model. Its GAMMA

would probably be a high-order Kalmai, filter requiring months of develop-

ment. Time and cost limitations have precluded generation of GAMMAs for
any ALPHAs of TLS.

1

1
3-68

^..■■HH.I» »HIH ■-'■%l<tW L,,"«'-

I ■

^■ ■

• 4.0 PERFORMANCE REQUIREMENTS

Performance requirements specify how well the functional requirements

must be implemented within the real-time process. While the set of func-

tional requirements specifies the meaning and integrity of data to be out-

put by the process, each performance requirement constrains one or more

mathematical expressions over a collection of these outputs and internal

data. In general, the system specification will establish performance

criteria at a level higher than that of the functional criteria; consequently

the methodology provides for performance requirements to be specified as

constraints on a collection of data Produced from a series or combination

of functional requirements, thereby indirectly constraining each embodied

functional requirement. This provision within the methodology does not

preclude the requirements engineer from decomposing the system specification

performance criteria into component performance requirements for allocation

to separate elements; however, it does support flexibility to enhance

design freedcm for the process designer.

An example of a simple performance requirement might be a specified

accuracy of an output relative to a defined precision of the input from

which the output is determined. Similarly, in a real-time process it is

often necessary to constrain the interval of time between arrival of a

stimulus at an input port and the appearance of a response at an output

port. Most often, a performance requirement establishes the criteria for

a mathematical expression which must be satisfied when applied to the data

in the process, and,frequently applies over the course of an engagement

rather than at any single point in time. Consequently, performance require-

ments in a system specification tend to be global in nature and ^re defined

at the subsystem level.

Historically, performance requirements have been stated in the English

language and, as a consequence, were subject to interpretation. Frequently,

these interpretations were not unique and the meaning and understanding

achieved by the developer did not coincide with that intended by the specifier.

As an example, in the track loop problem the specification established a

constraint on the total energy to be allocated to an image. Within the

4-1

■HHHKPWR^! «• ■■ijj. _,||| »»I WMB*»«

!"»--flB-

---■■■

Track Loop System construct, there exist three possible applications of

this performance requirement depending on the particular interpretation of

the developer: if (1) the requirement is applied at the output of the

allocator, allowance for scheduling conflicts or for radar subsystem

performance is not included; if (2) the requirement is applied at the out-

put to the radar subsystem, provisions for scheduling conflicts would be

included; however, if (3) the requirement is applied at the point where

radar returns are input and processed, then scheduling conflicts and radar

preemptions are accounted for and, in addition, the non-DPS term which

correspond; to radar processing between transmission of the signal and

receipt of the return at the processor interface is also included.

In an effort to eliminate ambiguities in the statement of performance

requirements to the process designer, SREM employs a machine-readable

language (RSL) with clearly defined elements, structures, relationships

and attributes. With RSL, the requirements engineer can specifically and

discretely specify performance requirements to the process designer.

Within the validation segment of REVS, the requirements engineer states

the performance constraint as a procedure which operates on data collected

at specified points, VALIDATIONJOINTS, along the R_NET STRUCTURE. For

each constraint an unambiguous pass/fail decision is determined for the

explicit TEST which the requirements engineer formulates and asserts Is

sufficient to declare that the PERFORMANCE_REQUIREMENT is satisfied.

In the track loop example mentioned above, where the test to assure

satisfaction of the performance constraint is applied at the output to the

radar subsystem, the collection of data to be operated on by the test

procedure includes those data which make the outgoing radar message and

the remembered copy of the data from which the outgoing message was formed

and which is ASSOCIATED WITH the ENTITYCLASS PULSE. By locating the

point for data measurement (VALIDATION POINT) at the output to the radar

subsystem, the specific DATA and FILES required by the test procedure are

accessed and retrieved such that the particular test can be exercised,

thereby eliminating ambiguity in the performance requirement statement.

Inclusion of the VALIDATION_PATH descriptors for connectivity and trace-

ability to the ORIGINATING_REquiREMENT and any DECISIONS involved in

^

h

f

4-2

w

■■■■■■■

■

c

t

interpretations of the performance constraint completes the definition

and clarifies the requirement.

Determination of consistency between the derived performance require-

ments and the performance specifications depends heavily on simulation as

does determination of consistency between the functional requirements and

the functional specifications. Performance requirements include two ranges

of constraints - those local to the process and those of a global nature

which apply to the system as a whole; functional requirements are local to

the process. Performance requirements, taken as a whole, can be said to

be consistent (both with one another and with the laws of nature) when

there is an existence proof of a simultaneous solution to both the local

and global requirements. Therefore, to demonstrate that the performance

specification and the derived performance requirements are achievable in

some process, it is sufficient to find a set of algorithms which, when

executed as specified by the R_NET STRUCTURE and the data connectivity,

satisfies the collection of performance requirements. The candidate

algorithms mechanized for this execution are written as PASCAL procedures

and are attributed to the ALPHAS which each analytically models. These

PASCAL procedures (GAMMA models) are linked together by the REVS simulation

generation process to form an analytical simulator in exactly the same sense

that the functional models (BETA models) are linked to form a functional

simulator. To the user, the principal difference between the functional

and performance requirements simulators is that the performance results

from analytic simulation are assessed against the requirements defined in

each PERFORMANCE_REQUIREMENT TEST to determine sufficiency of the solution.

The precision of the methodology developed for specifying functional

requirements is not readily available in specifying performance requirements

due primarily to the local and global range inherent in the performance

specification. That is, although the capabilities within the methodology

provide for an explicit and precise statement of each performance require-

ment, translation from the English representation of the specifications in

the source material to the particular PERFORMANCE_REQUIREMENT depends

heavily on the judgement of the requirements engineer and consequently can

be treated as "methodical" only in a limited sense. Therefore, the following

sections, describing the approach to developing performance requirements,

4-3

 u

will tend to be more illustrative than dennitive and represent the thought

process to De conducted by the requirements engineer rather than specific

rules to be followed.

O

The following steps outline the guidelines developed in subsequent

sections to specify performance requirements.

Step 1. The system specification is analyzed and each performance
requirement is identified, named and entered into the ASSM data
base. This activity is continued until all PERFORMANCE_REQUIRE-
MENTs have been inserted along with the ORIGINATING REQUIREMENT
or DECISION that each PERFORMANCE_REQUIREMENT is TRÄCEDJROM.

Step 2. Each PERFORMANCE_REQUIREMENT is considered in conjunction with
the R_NET or SUBNET STRUCTURES to identify the point along the
net at which the test for satisfaction of the requirement most
appropriately applies. This point establishes the location of the
VALIDATION-POINT that determines the termination of the VALIDATION_
PATH that is to be CONSTRAINED BY the PERFORMANCE REQUIREMENT.
(It should be noted that in certain cases a single VALIDATION_POINT
may be all that is required to implement a TEST of the PERFORMANCE_
REQUIREMENT.) This activity is continued until a point of
application for the TEST for each PERFORMANCE REQUIREMENT has been
located along the R_NET or SUBNET STRUCTURES and a VALIDATION_P0INT
has been named and entered into the ASSM data base as an element-
type and located on the STRUCTURE.

Step 3. An initial TEST which satisfies each PERFORMANCE REQUIREMENT is
formulated and analyzed based on data at the VALTDATIÜN_PüINT. In
general, analysis of the initial TEST formulation will result in
the determination that additional data, not available at the single
VALIDATION_POINT, will be required to support the TEST. Consequently,
additional VALIDATION_POINTs are identified, named and appropriately
located on the RJJET and SUBNET STRUCTURES within the ASSM. This
activity is continued until the necessary VALIDATION_POINTs have
been defined such that the collection of data required for each
TEST has been made available from the DATA and FILEs accessible
on the nets. At this time, DATA and FILEs required from each
VALIDATION_POINT are declared to be INPUT TO the respective
VALIDATIÜN_P0IN7 and entered into the ASSM. The VALIDATION^
POINTS are then considered collectively and VALIDATION_PATHs
are then named.

Step 4. An initial PATH structure for each VALIDATION_PATH is entered into
the ASSM considering the VALIDATION_POINTs and EVENTs required
for each initial TEST formulation. This activity is continued
until a PATH structure has been declared for each VALIDATION PATH
constrained by each PERFORMANCE REQUIREMENT.

J

w
4-4

Jj- ,,.,;.■-■ .i-.i: ■ ■ r~

"'-—" "-■■.'■■ '■■■■■f;;:^ ■■^^.■■■-- -- v..^.y:..,v^w^,..;.^^,^^^?i^,.. ■ ■ . ■ ■■. :■■-.■

c

Step 5. The requirements engineer is now in a position to finalize each
TEST formulation and refine the initial declaration of VALIDATION_
POINTS and VALIDATION_PATHs for each PERFORMANCE_REQUIREMENT TEST.
Each TEST is coded as a PASCAL procedure and entered into the ASSM
as an attribute of the respective PERFORMANCE_REQUIREMENT.

Step 6. The requirements engineer now identifies the port-to-port response
times required by the system specification. For each performance
specification a PERFORMANCE_REQUIREMENT TEST is defined Including
the attendant VALIDATION_POINTs and their RECORDS relationships,
and the constrained VALIDATION_PATH with PATH structure and with
MAXIMUM TIME, MINIMUM TIME and UNITS attributes in the same manner
that other PERFORMANCE_REQUIREMENT statements are developed. These
descriptors are entered into the ASSM to complete the initial
definition of the performance requirements statement.

At this point the requirements engineer has completed the initial

activities of SREM necessary to explicitly and unambiguously state

PERFORMANCE_REQUIREMENTs. The remaining activities involve confirmation

that the statements are consistent and complete. These activities employ

the static afnd dynamic checking features of REVS and the execution of

the analytical simulation built by REVS.

4.1 LOCATE TEST POINTS

A PERFORMANCE REQUIREMENT is stated relative to data collected at

specific VALIDATION_POINTs located on the RJET and SUBNET STRUCTURES. Even

in simple cases, identification of the data-collection points is critical

to the interpretation of a system performance constraint. The content and

context of the specification in the source material is used by the require-

ments engineer to determine the system engineer's intent and from which

the test point is defined.

As an example, consider the specification statement in the TLS DPSPR

(Appendix F) which requires that "The DPS shall allocate radar coimands

so that not more than (TBD) joules are commanded per image," At

least three interpretations can be associated with this apparently explicit

requirement.

1) The allocator shall assign track rates such that the
accumulated sum of the energy for each image over the
engagement (the product of the allocated pulse rate, the
energy per pulse and the duration of the allocation) shall
not exceed the specified limits;

4-5

"■■ - '
 MMIHIHIII' iiiiiiWBi.1,. ^

•
■ ■ ■ Wf^-*>-mm'V-^^*<'?^^'-'^ -^Kri''^.■.:■:■ ■>■*:■■:■•-■- :■■-■

2) The energy required by the radar commands transmitted across
the interface to the radar shall not exceed the specified
limit; or

3) The energy required by the radar commands acted upon by
the radar, as detected by the DPS in the radar return
messages, shall not exceed the specified limit.

Since not all of the pulses allocated per image may be scheduled and

since some of the scheduled pulses may be pre-empted by the radar, the

three interpretations lead to different performance requirement definitions.

The first point in the methodology at which the interpretation becomes
important is during the process of locating the VALIDATIONPOINT on the

R_NET or SUBNET at which the TEST for compliance with the system specification

is to be made. For the first interpretation, the test point should be
located at the output of the allocator; for the second interpretation,

the test point should be located at the input to the OUTPUTJNTERFACE RADAR_

OUT; for the third interpretation, the test point should be located at the
output of the INPUTJNTERFACE RADARJN. In the Track Loop example,

development of the PERFORM.'NCE__REQUIREMENT was based on the second interpre-

tation and is TRACED FROM a DECISION which delineated the development
process, through use of the DECISION attributes, the PROBLEM, the ALTERNATIVES

and the CHOICE.

The VALIDATION_POINT at which the final data is collected on which
the PERFORMANCE_REQUIREMENT TEST operates in most cases is associated with

the point in processing along the path at which the test is relevant. In
general, selection of the appropriate R_NET or SUBNET is critical to the
requirements definition; however, the particular location along the net

may offer some flexibility depending on the type of data involved. Since,
in REVS, execution of a net occurs in zero time, the selected location may
be any point at which the required data are available. As an example,

the energy per image constraint defined by the third interpretation could

be applied at a point on the RESPONSE_TO_RADAR R_NET either preceding or
following the ALPHA: ACCEPT_AND_CHECK_RADAR_RETURN_MESSAGE.

At th's point in the methodology, the ASSM should contain the following

performance related RSL statements, described in the order in which they
would generally be entered.

O

4-6

-^: r>r-***^r"'^w'""^" •••m'm."*.*»****

mm

^t^.^^^:.^^-^,.^^.,^-.^, ,;.,,. ;i ,-.W-: ;,<.',-..^.
■■ ■■ ■ ■ -.-^^.u:-'^-^--^-^^ "^^--■>-^-.---:

1) Each ORIGINATING_REQUIREMENT will have been defined.

2) Each PERFORMANCE REQUIREMENT will have been identified
including traceability to the 0RIG1NAT1NG__REQUIREMENT.

3) Each DECISION involved in deriving each PERFORMANCE REQUIREMENT
based on interpretation of the ORIGINATING _REQUIREMENT will
have been defined. Explicit declaration of the DECISION
attributes PROBLEM, ALTERNATIVES and CHOICE will be included.

4) The VALIUATI0N_P0INT at which each PERFORMANCE_REQUIREMENT
TEST is to be applied will have been identified and uniquely
named.

5) The appropriate R-NET and SUBNET STRUCTURES will have been
updated to include the location of each VALIDATION_POINT
node.

t

The RSL statements and R_NET STRUCTURE are provided in Figure 4-1 for

the energy-per-image constraint.

4.2 DEFINE DATA AND TESTS

A VALIDATIONJ'OINT is precisely a port through which simple DATA are

accessed and through which DATA and FILEs ASSOCIATED WITH ENTITY_CLASSes

and ENTITYJTYPEs are extracted, all of which is RECORDed for post-processing

by the PERFORMANCE_REQUIREMENT TEST in the REVS validation segment. These

DATA are obtained during simulation from the global data base defined by

the functional requirements specifications. Simple DATA (not in an entity,

file, or message hierarchy) which must be recorded at a VALIDATION_POINT

are related to that point via RECORDS. Message DATA are similarly RECORDED

BY a named VALIDATIONJOINT on the RJET to which they are LOCAL. If an

entire FILE Is to be recorded, the relationship RECORDS may be applied to

it as well.

For DATA which are CONTAINED IN a FILE, or are ASSOCIATED WITH an

ENTITY_CLASS or ENTITY_TYPE, a problem may arise in defining the instance

of the repeated data for which the DATA are to be RECORDED. In general,

the instance desired will have been selected earlier on the R_NET. For

example, the PULSE which is relevant for the PERFORMANCE_REQUIREMENT:

ENERGY_PERJMAGE is the one which was CREATED BY the ALPHA: PICK_COMMAND.

Since no intervening activity could modify the selection, the DATA corre-

sponding to that PULSE are available to the VALIDATIONJOINT used for the

4-7

^

'■'■■— ~~?T~ 11 ■IIJIWII»«

ORIGINATING J»FQUIREMENT: PAOAR-RESOILRCE_CONTROL..B,
DESCRIPTIOM:

RDPSPR PARAGRAPH 3.2.4(B), RESOURCE CONTROL» STATES THAT
("THE OPS SHALL ALLOCATE RAOAR COMMANDS SO THAT NOT MORE
THAN (TRH) JOULES ARE COMMANDED PER IMAGE» NOR MORE THAN
(TBD) KILOWATTS OR (TPD) PULSES/SECOND FOR ALL IMAGES IN
TRACK.»H.

PFRFORM&NCE.REQimEMENT: ENER6Y_PER.IMAGE.
TRACED FROM: ORIGINATING^REQUIREMENT: RAOAP,RESOUPCE_CONTROL_B.

PERFORMANCE.REQUIREMFNT: PULSES_PER„SECOND.
TRACED FROM: 0RI6INATING_REQUIREMENT: RADAR_RESOURCE_CONTROL.B.

PEBFORMANCE.REQUTREMFNT: RADIATED_POWER,
TR&CFD FROM: OOIGINATING.REQUIREMENT: RADAR_RESOURCE_CONTROL.B.

DFCISION: RADARJ9ESOUPCE_CONTROL..81.
PROBLEM:

(OPSPR PARAGRAPH 3,?,4(B)» STATEMENT ("THE DPS SHALL
ALLOCATE RADAR COMMANDS SO THAT NOT MORE THAN (TBD) JOULES
ARE COMMAMDED PER IMAGE»...") ALLOWS FOR THREE POSSIBLE
TNTFRPRFTATIONS IN DETERMINING THE POIMT AT WHICH THE
PERFOPMANCEJ'EQUIREMENT TEST IS APPLIED.I.

ALTERNATIVES:
H. THE ALLOCATOR SHALL ASSIGN TRACK PATES SUCH THAT THE

CUMULATIVE SUM OF THE ENERGY FOP EACH IMAGE OVER THE
(THE PRODUCT OF ALLOCATED PULSE RATE»
PULSE.» AND DURATION OF ALLOCATION) SHALL
(TBD) JOULES.
REOUIRED BY THE RADAR COMMANDS TRANSMITTED
INTERFACE TO THE RADAR SHALL NOT EXCEED

(TBD) JOULES.
3. THE ENERGY REQUIRED BY THE »ADAR COMMANDS ACTED UPON

BY THE RADAR AS DETECTED BY THE DPS IN THE RETURN
MESSAGES, SHALL NOT EXCEED (TBD) JOULFS.T.

CHOICE:
{?, THE ENERGY REQUIRED BY THE RADAR COMMANDS TRANSMITTED

ACROSS THE INTERFACE TO THE RADAR SHALL NOT EXCEED
(TBD) JOULES SHALL BE TESTED FOR COMPLIANCE AT THE
INPUT TO THE OUTPUT INTERFACE: RADARJ3UT,t.

TRACED FROM: OPIGINATINGJ>EQUIREMFNT: RADAR_RESOURCE_CONTROL.B.
TRACES TO: PERFORMANCEJ?EQUIREMENT: ENERGY.PER.IMAGE.

VAL IOAT ION„POINT: RADAR.COMMAND^OUTPUT.POINT.
TRACED FROM: DECISION: PADAR..RESOURCE_CONTROL_Pl.

?.

ENGAGEMENT
ENERGY PER
NOT EXCEED
THE ENERGY
ACROSS THE

Figure 4-1 Performance Requirements Statements Representation
at the Completion of SREM Step - Locate Test Points

t
4-8

■ ■^...■.-■■■^:.. :-. .:,.:,^:i:.,. ,T. ■ , ,, ,,_,,.,:,

C «ffE^rCNO

t

•

Figure 4-1 Performance Requirements Statements Representation
at the Completion of SREM Step - Locate Test Points
(Continued)

4-9

--'—■—

wmmmfi ■IWIIWII—WiMMi 11

requirement. However, the energy of that command, which is also needed

for the TEST, is not so simply available.

The energy of the pulse is a part of the WF_CHARACTERISTICS in the

FILE: WAVEFORMJABLE. The link between the PULSE and the WAVEFORMJABLE

is the identifier of the kind of transmission, the PULSEJYPE and WF_NAME,

respectively. (Similarly, the waveform identifier is the RADAR_TYPE of the

outgoing command MESSAGE.) There are three obvious ways of obtaining the

required information.

1) RECORD either the PULSE TYPE or the RADARJYPL from XMIT_R;
RECORD the WAVEFORMJABLE once (say after ALPHA: STARTER,
where it was created); co-relate the information in the TEST.

2) Provide an ALPHA with ARTIFICIALITY: VALIDATION before the
VALIDATION_POINT to select the WFJAME; assign the WF CHARAC-
TERISTICS in that ALPHA to a new LOCAL DATA item; and RECORD
that DATA item.

3) Provide a GLOBAL DATA item at some earlier processing point
with ARTIFICIALITY: VALIDATION and pass it along appropriately
to the VALIDATION_POINT where it is to be RECORDED.

In TLS, the third choice is attractive because there is a DATA item left

from early thinking on the problem which has the required properties. The

DATA: COMMAND_ENERGY was once thought to be useful on RJET: XMIT_R. Con-

sequently, it was included in each record of the FILE: COMMAND. But develop-

ment of the models made it clear that the element was not needed for XMIT_R,

so it might be deleted. However, it has exactly the right properties for

an ARTIFICIAL element, since its value is the energy of the COMMAND which

would be selected by PICK_COMMAND for this transmission.

The choice among the options available is up to the requirements

engineer, and the process designer should recognize that there are degrees

of freedom in the selection which can be reexamined if the design would

benefit. For TLS, the first option is particularly attractive: the FILE

to be recorded contains only constants, so that correlation of data in the

TEST poses no problem. The third option may also be acceptable, since it

ensures that the DATA RECORDED for the PERFORMANCE_REQUIREMENT are clearly

those which are needed. The second option, which modifies the R_NET with

an ARTIFICIAL element is esthetically less desirable than either of the

other choices. For the purposes of this document, the first option is

4-10

■«■^p1—'-^t*.^ ■ ■■■ _^w_-- ■■ ■■

' ■ ■■■■■;;■■:■■, ■ ■ ■■■I-. ■■■:\-::-:r^im'w<,--&Bm.ii-m ■ . . . ■■ . ■ . ■ ■

€

selected, and an additional VALIDATION_POINT: STARTING-POINT is identified

immediately following the ALPHA: STARTER to RECORD the FILE: WAVEFORMJABLE.

A TEST is a PASCAL procedure attributed to a PERFORMANCE_REQUIREMENT

which CONSTRAINS one or more VALIDATION_PATHs. The TEST executes, in a

post-processing environment, on those DATA which have been RECORDED BY one

or more VALIDATION_POINTs required to collect the DATA to be tested and

which appear as nodes on the PATH structure of a VALIDATION_PATH that is

CONSTRAINED BY the PERFORMANCE_REQUIREMENT. Recall that data required for

the TEST are RECORDed on an output data set by means of the VALIDATION_

POINT relationships and attributes and each data record is labeled in the

output data set by the VALIDAUON_POINi name. During post-process TEST

execution, the TEST must access the appropriate data record in the output

data set and does so with use of the RETRIEVE operator.

The requirements engineer may choose to define the VALIDATION_PATHs,

the PERFORMANCE_REQUIREMENTs and the TESTs concurrently; however, in doing

so he minimizes the effectiveness of REVS capabilities which support this

activity through static checking of the RSL statements. It is recognized

that the requirements engineer must have a concept of the TEST configuration

at the time the VALIDATIONJ'OINTs and VALIDATION_PATHs are defined. Keep

in mind, however, that it is mandatory that the TEST be configured based on

the data available on the RJIET and SUBNET STRUCTURES. It is only after

all attempts have failed to produce a valid TEST configuration, under these

constraints, that the requirements engineer should redefine the R_NET and

SUBNET STRUCTURES or introduce STRUCTURES and element types with attribute

ARTIFICIALITY in order to accomplish the TEST definition. Consequently,

it is recommended that the requirements engineer approach the PERFORMANCE_

REQUIREMENTS definition in a top-down, step-wise manner. That is,

1) Examine each PERFGRMANCE_REQUIREMENT to determine the functional
requirement, defined by the R NET and SUBNET STRUCTURES, to
which the PERFORMANCE_REQUIREMENT applies.

2) Examine the DATA available along the RJET and SUBNET STRUCTURES
to a) determine a point of optimal location (the terminal
VALIDATIONJOINT) at which a TEST should be performed and b)
provide insight into formulation of the TEST.

3) Declare the necessary DATA and FILEs at this point as RECORDED
BY the terminal VALIDATION POINT and formulate the initial
TEST.

4-11

-'■-"- -

■

4) Define and locate additional VALIDATION POINTs based on
data requirements for the TEST formulation and declare the
necessary DATA and FILEs as RECORDED BY these additional
VALIDATION_POINTs.

5) Define and locate the initial VALIDATIONPOINT, that is, the
earliest occurring VALIDATION^01 NT appearing along the R_NET
and SUBNET processing flow that defines the functional require-
ment to which the PERFORMANCE^REQUIREMENT applies.

6) Name the VALIDATION__PATHs of the nets.

7) Relate the VALIDATION_PATHs to the PERFORMANCE_REQUIREMENT
which CONSTRAINS them.

Application of these steps to the definition of PERFORMANCE_REQUIRE-

MENT statements yields an orderly development process and provides maximum

utility of the features provided in the REVS RADX and VALIDATION segments.

Exceptions to this step-wise development process may occur when a single

PERFORMANCE REQUIREMENT applies to more than one functional requirement

defined by R_NETs and SUBNETS that are not connected by EVENT enablements.

Under these circumstances, the general solution is effected by allowing the

PERFORMANCE_REQUIREMENT to constrain multiple VALIDATIONJATHs. Alternatively,

the requirements engineer may choose to decompose the single PERFORMANCE^

REQUIREMENT into multiple requirements which apply explicitly to the func-

tional requirements defined by each non-connective R_NET and SUBNET STRUCTURE.

In mechanically applying the step-wise process, the requirements

engineer would read the system specification and enumerate the statements

of performance as ORIGINATING_REQUIREMENTs. Each requirement is then

located on the R_NETs and SUBNETS as one or more V.UIDATION_POINTs. Each

PERFORMANCE_REQUIREMENT and VALIDATION_PATH is then named. A PERFORMANCE_

REQUIREMENT is logically named for its content, such as ENERGY_PERJMAGE

which is used for the track loop example discussed previously. Similarly,

where the second interpretation of the ORIGINATING_REQUIREMENT was implemented,

the VALIDATION_PATH is named RADAR COMMAND OUTPUT which signifies both

the location of the test and the data to which the test applies. In this

particular case the PERFORMANCE_REQUIREMENT CONSTRAINS a degenerate

VALIDATION_PATH (i.e., only one VALIDATION_POINT is required); consequently,

the VALIDATIONJ'ATH declaration serves only to establish continuity within

the RSL statements. The single VALIDATION POINT is appropriately named

RADAR COMMAND OUTPUT POINT.

. *

4-12

T"""''"-.-.

■

.A^U. .^.rt^tt^j^^.-- .-■ ■^^•r^m^^- ■^■■■■^~^:,:^¥^-^'Tj

•

•

The requirements engineer next considers each requirement in the

specification separately, and identifies for each VALIDATIONPOINT the

information which must be extracted to support the TEST for compliance.

Note that a single VALIDATION POINT may be used to collect data for multiple

PERFORMANCE_REQUIREMENTs; consequently, it may appear in the PATH structures

of several VALIDATIONJATHs. Therefore, the DATA and FILEs declared as

RECORDED BY a VALIDATION_POINT will be the logical OR of the data to be

collected for each of the PERFORMANCE_REQUIREMENTs that use the VALIDATION_

POINT. Subsequently, each specified requirement is translated into a

PASCAL procedure which is written as the TEST for that PERFORMANCE_REQUIREMENT,

At this point in the methodology for developing performance require-

ments, the ASSM data base should contain the following additional performance-

related RSL statements, described in the order in which they would generally

be entered.

1) The DATA and FILEs accessible from those appearing on the
nets will have been declared as input to each terminal
VALIDATION_POINT through use of the RECORDS relationship.

2) Additional VALIDATION_POINTs required by each PERFORMANCE_
REQUIREMENT will have been defined and appropriately located
as nodes on the net STRUCTURES. DATA and FILEs RECORDED BY
these VALIDATION_POINTs will have been declared.

3) Each VALIDATION_PATH CONSTRAINED BY each PERFORMANCE_REQUIRE-
MENT will have been defined and a PATH structure for each
VALIDATION_PATH will have been defined by declaration of the
VALIDATION_POINTs and EVENTs appearing on the net STRUCTURES
between the initial and terminal VALIDATION_POINTs.

4) A TEST will have been written for each PERFORMANCE_REQUIREMENT.

An example of the RSL statements in the ASSM at this point is provided

in Figure 4-2 for the energy-per-image constraint discussed in preceding

sections.

4.3 DEFINE SUPPLEMENTAL VALIDATION POINTS AND DATA

A VALIDATIONJ'OINT not only defines a point in the processing flow

at which data are collected for evaluation against a PERFORMANCE_REQUIRE-

MENT, but also may identify the point along the nets at which the measure-

ment is made for compliance with the system performance specification.

4-13

^■H^

ORIGINATING.RFOUIREMENT; RADAR.RESOMRCc ,CONTPOL«R.
DFSCRIPTIÖN:

"OPSPR PARAGRAPH 3.?.4(B)f RESOORCF CONTROL» STATES THAT
M'THE DPS SHALL ALLOCATE RADAR COMMANDS SO THAT NOT MORE
THAN (T9D) JOULES ARE COMMANDED PER IMAGE» NOR MORE THAN
(T8D) KILOWATTS OR (TBO) PULSES/SECOND FOR ALL IMAGES IN
TRACK.")",

i

PERFORMANCE.REOUIREMFNT: ENER6Y_PER_IMAGE.
TEST: (* THE TBD BELOW MUST BE REPLACED BEFORE EXECUTION»)
"CONST

ENERGY_LIM7T=(TBD) I
VAR
IMAGE.ENERGr: REAL I

BEGIN
ENER6Y_PER.IMAGE «=TRUEI
FOR EACH C?.IMAGE_HANDOVER RECORDING
DO

IMAGE_EMEPGy:=0.0
FOR EACH RADAR^COMMAND^OUTPUT.POINT RECORDING

SUCH THAT (RAOAR.COMMAND_OUTPUT_POINT.TARGET.lD=
Ca_IMAGE_HANDOVER.HO_ID)

DO
SELECT FIRST FROM STARTING.POINT.WAVEF0RM_TA8LE

SUCH THAT {RAOAR_COMMAND..OUPUT_POINT,RADAR.jrPEs
STARTlNG_POINT,WF_NAME)I

IF FOUND THEN
IMAGE_ENER6Y:=IMAGE_ENERGY*

STARTING.POINT.WF^CHARACTERISTICSI
ENO»

ENDFOREACHI
IF (IMAGE_ENERGY>ENERGY_LIMIT) THEN
ENFRGY_PER_IMAGE:=FAL5EI

ENDFOREACH
ENDI".

TRACED FROM: ORIGlNATING_REQUIREMFNT: RAOAR_RESOURCE_CONTROL.B.

PFRFORMANCE.RE'JUIREMENT: PULSES„PER_SECOND.
TRACED FROM: ORIGINATING.REOUIREMENT: RAOAR.RESOURCE.CONTROL.B.

PERFOR»rAMCE_REOUIREMENT: PAOIATED_POWER.
TRACED FROM: ORIGINATING.REQUIREMENT: RA0AR_RESOURCE_CONTROL«S.

Figure 4-2 Performance Requirements Statements Representation at
the Completion of SREM Step - Define Data and Tests

0
4-14

■ -..,,..., -,,,,.,,-..=.,.:..,.:-...:,.. .,:.-^.-:.. ., ,,,,..... ,,^ .^V^,^ - .^-.^ ■..---■:.--■- -. ^ ^ ^ V: ' ^-^ ^^ ^ ' ^ T "" ": ^ ^ • ^ ;;Jr ^ -^ - " V ^ ' ^ ' ^

B

P.

3.

ENGAGEMEWT
ENERGY PE»
NOT EXCEED
THE ENERGY
ACROSS THE

DECISION: RAOAR.RESOURCE^CONTROL.Bl,
PROBLEM:

"DPSPR PARAGRAPH 3.?,4(9)» STATEMENT ("THE DPS SHALL
ALLOCATE RADAR COMMANDS SO THAT NOT MO^E THAN (TRD) JOULES
ARE COMMANDED PFR IMAGE...."J ALLOWS EOR THREE POSSIBLE
INTERPRETATIONS IN DETERMINING THE POINT AT WHICH THE
PEREOPMANCE.REOUIREMENT TEST IS APPLIED.",

ALTERNATIVES;
"1. THE ALLOCATOR SHALL ASSIGN TRACK RATES SUCH THAT THE

CUMULATIVE SUM OE THE ENERGY EOR EACH IMAGE OVER THE
(THE PRODUCT OE ALLOCATED PULSE RATE»
PULSE» AND DURATION Of ALLOCATION) SHALL
(TBD) JOULES.
REQUIRED BY THE RADAR COKMANDS TRANSMITTED
INTEREACE TO THE RADAR SHALL NOT EXCEED

(TBD) JOULES,
THE ENERGY REQUIRED BY THE RADAR COMMANDS ACTEO UPON
PY THE RADAR AS DETECTED BY THE DPS IN THE RETURN
MESSAGES. SHALL NOT EXCEED (TBD) JOULES.".

CHOICE;
"2. THE ENERGY REQUIRED BY THE RADAR COMMANDS TRANSMITTED

ACROSS TME INTEREACE TO THE RADAR SHALL NOT EXCEED
(TBD) JOULES SHALL RE TESTED EOR COMPLIANCE AT THE
INPUT TO THE OUTPUT INTERFACE: RADAR_OüT. •'.

TRACED FROM: 0RI6INATING_RE0UIRFMF-NT: RAOAR_RESOURCE_CONTROL_fl.
TRACES TO: PERPORMANCE.REQUIREMENT: ENERGY_PER_IMAGE7

VALIDATION.POINT: RADAR_COMMAND_OUTPUT_POINT,
RECORDS:

OATA: TARGET.ID.
OATA: RADAR„TYPE.

TRACED FROM: DECISION: RADAR_RESOURCE_CONTROL.Hl.

VALIDATION^POINT: C?_IMAGE„HANDOVER.
RECORDS: DATA: HO.ID.
TRACED FROM:

ORIGINATING_REOUIREMENT: RADAR.RESOURCE_CONTROL_B.
PERFORMANCE.REOUIREMENT: ENERGY_PER_IMAGE.

VALIDATION^POTNTt STARTING-POINT.
RECORDS: FILE: WAVEFORM_TABLE.
TRACED FROM: PFRFORMANCE.REOUIREMFNT: ENERGY.PER.IMAGE.

Figure 4-2 Performance Requirements Statements Representation at
the Completion of SREM Stfp - Define Data and Tests
(Continued)

4-15

i-l-ttitf£i

VALIOATION.PATH: RADAR_COMMAND,OUTPIiT,
CONSTRAINED 8V: PFRFORMANCE.REQUIREMENT: ENERGY.PER.IHAGE.
TRACED FROM:
ORIGINATING.PEOUIREMENT: RAOAR.RESOüRCE_CONTROL^9.
DECISION: RAOAR_RESöURCE_CONTROI.Rl.

PATH:
VALIDATION.POINT: RADAR^COMMAND.OUTPUT.POI^T
FND.

VALIOATION_PATH: ^P.HANDOVER.COMMAND^INPUT.
CONSTRAINED BY: PERFORMANCE„REQUIREMENT: ENERGY.PER.IMAGE.
TRACED FROM: ORIGINATING.REQUIREMENTS RAOAR.RESOURCE.CONTROL.R.
PATH:

VALIDATIDN^POINT: CZ^IMAGE^HANOOVER
END,

VALIDATION^PATH: RADAR.WAVEFORM^PROPERTIES.
CONSTRAINED BY: PEPFORMANCE.REOUIREMENT: ENERGY.PER.IMAGE.
TRftCED FROM: ORTGINATING.REQUIREMFNT: RA0ARj.RESOUrtCE_CONTROL.B.
PATH:

VALIDATIONJ»OINT: STARTING-POINT
PND,

0

Figure 4-2 Performance Requirements Statements Representation at
the Completion of SREM Step - Define Data and Tests
(Continued)

-..}

4-16

■ — .n . imyi i »»■■I'll »—»«-*-««**-»»"

v'-- -y]'' ''".; ■^?^-^—:-^:<.r. v. ■ ^.^T^0s.-_,-v ^...^.^^^^^^^^^^^^^^ .:^:V%i^^,-!-V;i.;,,.^^,;«V-"~^.---.-.-.,.. . ■ ,.■,.' ..,■ ■ ,V. / ': '-^,.: ■ ' ■ ^ i !>'? ^ ' ' b^
■

1

•

t

Through identification of the initial VALIDATIONJOINT on a VALIDATION__PATH

(i.e., the earliest VALIDATION POINT along the R-NET and SUBNET STRUCTURES

representing the functional requirement to which the performance constraint

applies), the requirements engineer may define the PERFORMANCE_REQUIREMENT

in terms of performance between the initial and terminal \/ALIDATION_POINTs.

Processing of synchronous threads (i.e., elementary, stimulus-response

processing) will frequently employ such paths, as will requirements which

reflect the decomposition and partitioning of system performance specifications

to a level below that where the constraint is defined to be applicable to

the DPS treated as a "black-box." For example, in a complete BMD system,

constraints on discrimination may be specified in terms of target classifi-

cation relative to the object state vector obtained at the output of the

tracking function. In such cases, a VALIDATION_POINT would be located at

the entry point of the net which defines the functional requirements for

discrimination to identify the starting point of the PERFORMANCE_REQUIREMENT

TE5T.

Early identification of a specific TEST for a PERFORMANCE_REQUIREMENT

within the development process implies a capability to define, early in

development, data needed for testing that has no counterpart in the functional

requirement description of the system. On a synchronous thread, these data

are commonly collected at an early VALIDATION_POINT; however, on an

asynchronous thread, it may be inconvenient to collect and correlate data

from two VALIDATIONPOINTs appearing on disjoint paths or net structures.

Therefore, the requirements engineer defines DATA items, element types

and in extreme cases R-NET or SUBNET STRUCTURES with attributes ARTIFICIALITY:

VALIDATION to convey the needed DATA to a VALIDATION_POINT at which it may

be extracted for a TEST. For example, in Track Loop suppose that a

performance constraint establishes a maximum delay time between the arrival

of a track return message at the INPUT INTERFACE RADARJN and the time at

which the data contained in the return message is incorporated in the data

which makes the command message that passes to the rac^r through the

OUTPUTJNTERFACE RADAR OUT. The connection between tne two interfaces is

asynchronous due to scheduling operations and use of the IMAGE_INJRACK

ENTITY_TYPE in R-NET SKEDR. Since no one-to-one correlation exists

between the return received and the command issued, a validation DATA

4-17

^i a

item, RETURN JIME, can be defined and ASSOCIATED WITH the ENTITY_TYPE

IMAGEJNJRACK. This DATA item would be OUTPUT FROM the UPDATE_STATE

ALPHA, where it would be set equal to the current value of engagement

time, and would be RECORDED BY a VALIDATIONJOINT located on the RJET

XMIT_R immediately preceding the OUTPUTJNTERFACE RADAR_0UT.

Note that information conveyed by an element type with ARTIFICIALITY:

VALIDATION must be provided in the real-time process when it is being used

to validate the process design against the system performance specifica-

tion. In practice, element types so defined represent a counterpart to

the hardware test point, and like their equivalent may be retained in the

fielded system by management directive.

At this point the requirements engineer has completed the steps of

the methodology for developing performance requirements. The ASSM data

base has been built with liberal use of the TRANSLATOR and RADX segments

of REVS to insure the accuracy and completeness of each PERFORMANCE^

REQUIREMENT description. The requirements engineer is now in a position

to begin the compilation debug process and execution of the analytic

simulator for verification and refinement of the PERFORMANCE_REQUIREMENT

statements.

li

4-18

)ii|Wiiin>)i:.. «"■"■ '':"■'

■ ■-
. .. ■ ■ ■ .

mmmmmmm****' ■ < r

PART 11 - MANAGEMENT APPROACH

I

5.0 INTRODUCTION

One of the major benefits in using the SREM tools and techniques dis-

cussed in Part I to develop software requirements is that the process is

inherently manageable. The technical approach consists of specific activi-

ties which have well defined beginnings and endings, and the high degree

of automation provided by REVS allows a degree of management visibility

which is ordinarily not attainable in the specification development

process.

The three sections which follow discuss the three important aspects

of managing software requirements engineering:

• Defining Measurable Milestones

• Planning

• Management Control.

The emphasis in these sections is to describe the management considera-

tions which are unique to the application of SREM. Just as Part I will not

make good requirements engineers out of technicians. Part II will not make

good managers out of clerks. Even good managers, however, are helpless if

they do not have the means to establish visibility and control. Part II

is intended to give the experienced manager an understanding of how the tools

and techniques of SREM can be used to establish and maintain a sound manage-

ment plan for the specification of software requirements.

5-1

am

■

6.0 DEFINING MEASURABLE MILESTONES

The key to successful management of software requirements engineering

is the establishment of meaningful, clear, and measurable milestones. There

is a tendency to treat requirements generation as a level of effort problem,

since the job of milestone definition is not easy and requires a technical

understanding of the work to be performed. Establishing milestones such as

"Processing Performance Specification - First Draft", "Processing Perfor-

mance Specification - Second Draft", etc., may provide clarity and a super-

ficial measurability but does not establish a meaningful or effective

management tool.

Management of an activity using the Software Requirements Engineering

Methodology (SREM) can be extremely effective because the discipline

inherent in SREM permits segmenting the effort into activities which have

meaningful and measurable terminations. An example approach to defining

SREM related milestones is illustrated in this section. The milestones

are divided into two groups:

Group 1 - Functional software requirements development.

Group 2 - Functional software requirements validation.

An overview of the SREM activities described in Section 3 is shown

in Figure 6-1. Simply, software requirements are generated by transforming

corresponding system requirements. The initial activity is a preliminary

evaluation and organization of the source specifications. This is accotnplished

by drawing the R-Nets. Once this activity is complete, parallel development

of the segmented requirements can proceed. As the requirements segments are

developed, they are entered into the REVS data base (ASSM) from which they are

drawn for static evaluation. When the ASSM entry for all software require-

ments is complete, a dynamic simulation (functional and/or analytic) can be

generated and a dynamic evaluation performed to complete the requirements

validation. At various points in this process, problems with the source

specifications can be identified and fed back to the system engineer.

%».

. . [äs;:i--'<=lf.i:*fT,.^^-:.:, «..r^iW:'!-■:-..;-■■:■?.- -.W-N. X,,---:---i-V-:r.---;-.-. ,:■■■-'!.■-■---■..■■.r -r.u-.^t^vi;:....l r -.jir.'v. ,..::...,-.:■.-..■,■..

*.^
ro

CJ

00
LxJ

>-*

o
o

o

2°
ja

LU
0O dl
LU

z ^

>-

00
1—<

CO z o

i
I
i

O)

o
c o

1- I«
> -a

*-> r—

< >-

uu c
to

o

t r

Ui

A
R

E
M

E
N

T

2SI >
U« »—•
0=3
co er

g

l
11 ':

sioynos 3i9V30vyi

%

6-2

MWMMIMI

■■■■'-■/-■::■■■■-■'-:■■■■■- ■ ,■ ■ ■ v ■ ^--■,-^.^,-^yi.rTv^..:i.^,y..¥*v.^

6.1 SOFTWARE REQUIREMENTS DEVELOPMENT

Starting with the initial set of milestones, the natural beginning of

software requirements development is the acceptance of source specifica-

tions. This is not a final acceptance. That can't take place until the

software requirements are validated. Rather, the software requirements

manager must establish that the source specifications provide a sufficient

base from which the requirements engineering can proceed. Ideally this

base is complete, clear, and correct. In complex systems, such as those

required for ballistic missile defense, establishing an ideal base is a

goal seldom achieved. The best that can be hoped for is to identify those

places where the source specifications are incomplete, unclear, or of

questionable correctness, and then proceed with risk -- but under control.

Immediate feedback is provided to system engineering on the deficiencies

found in the source specifications so that answers can be developed.

t
Th«3 initial set of milestones shown in Figure 6-2 is designed to

accomplish two objectives. The obvious purpose of specification review

is to establish specification acceptance and identify exceptions to and

conditions on this acceptance. The second objective is to begin the actual

software requirements devnopment. Drawing the R-Nets is used to

organize the source specifications and to establish a basis for commitment

of the individuals responsible for writing the software requires2nts. It

is this commitment which is the best measure of progress through the

acceptance of source specifications.

As discussed in Section 3, the R-Nets typically require some creative

engineering before they can be completed. Therefore, this initial review

will not normally result in fully complete R-Nets. It should, however

identify what information or assumptions are needed for completion. These

are described in RSL as DECISIONS as shown in Figure 6-3. At this point,

only the statement of the PROBLEM and the TRACES TO attributes are entered

(and maybe the ALTERNATIVES). Each DECISION is reviewed with system engi-

neering to verify that the source specifications have been correctly

interpreted before the ALTERNATIVES and CHOICE are completed.

6-3

tdmtm at MlWlMrM imiMii i

11 '

co >-
t- CQ
z >-

. UJ _IQ

< UJ z: _J ui
< Oi Z HH CJ

r-" Z) Ul Ul
U. O-l— CO LU
o ui rr -< QC

c

CO Qi 1-1 OQ CO o

1
a

>-
00 ^3

CO c
ZQ 1 co o ui ca

o ►-•>(_) t r— CO o o
_ £X •r*
o a. ui 3
ui a. a: O"
Q< CO I

^ £ o
►-H (0
1—
Q-
l-H H- _l
cx: < Ul o
o Ul >. co
co co _j ui
Ul CM ' << _J tm
Q • CQ> O

r-m o< <♦-
Ul ^ccm

K-a. Q. ■M:

l 2^^ E
o

IS)
LU
-"

3 s
z

£ e g
!-•

o Ul

Ul _l
">
f—

1 -J Ul ♦J

f—Cvl £ LU < j =«.=fcO_l
o a»

r—' H-h- < p"

9 UIUJ .2
ZZOQ. 1 0 • • K- _l ■

'" Q:Q:UJ< co

t\j

ao i
CO o to
as tj
o t IP^ (S3

h- *- Z 3
QS <Q2:S o>
2 o ui ui o; ■P*

h- •-■ -a:!— UI u.
CO

SP
EC
IF

BA
SE
LI

BY

SY

S
EN
GI
NE

1

6-4

..*-:„

•^

.J.- I. . .. , I ;_ ^MI

-'':>"'r<<"Wf'--:'-:wmrn''tM «»^.jiKf»»»«''!*»!«'*-««!»!:«^»**! .*•;"« *,»'->'«SfJi*, i.*»»,,;«»

t Criteria for this initial review should include:

• Can you, the reviewer, develop software requirements from
the informar.ion contained in the source specifications?

§ What changes or additional information would make your job
easier?

t Are the performance requirements present and understandable?

• Do the source requirements appear to be overly restrictive
(i.e., at too low a level of detail)?

,

For each milestone of Figure 6-3 the Software Requirements Manager

or his Configuration Control Board (CCB) is responsible for recognizing

the milestone completion. On a very large software development project

a hierarchy of secondary milestones may be necessary. These lower level

milestones should be under the cognizance of lower level managers and are

represented to the Software Requirements manager only in aggregate as

higher level milestones.

The first effort is aimed at completing each R-NET to the ALPHA

level. Most of this activity can be segmented to the R-NET and SUBNET

levels. However, it is advisable to assign one individual the responsi-

bility to coordinate the data base This is a third party action to

bring about agreement on interfaces between R-NETS and SUBNETS. In addi-

tion, this data base approval activity should include analysis of the data

base to eliminate dead (unused) or orphaned (unset) data entities.

To a very large project, the Requirements Manager may also wish to

have an independent group transcribe the source specifications into ORIGINATING_

REQUIREMENTS and enter them Into the ASSM and then place them under configu-

ration control. Since this step is critical to the validity of traceability

audits later on, this independent entry may be justified. On smaller projects,

this may not be appropriate.

Again, an opportunity exists for the software requirements engineer to

feed back problems to the system engineer via DECISIONS. While there Is a

tendency to identify and comnunicate problems in a continuous manner, this

destroys the baseline and gives the entire project a drifting feeling. It

■'s therefore necessary to set up specific milestones for DECISIONS. The

6-5

DECISION : RAOAR_SCHEOULER„PRIORIT1ZATION.
ALTERNATIVES: "I, SCHEOI'LE PULSE..BY.PULSE. THIS

NETS BUT WOULD OBVIATE OPTIMIZATI
2. OPTIMIZE OVER THE ENTIRE FRAME,

AS A «HOLE GIVES BEST RESULTS BUT
FACTORS FOR PULSE ENSEMBLES,

3, PRIORITIZE PULSES SUCH THAT ANY
PRIORITY BEATS ALL PULSES OF LOWE
SUBOPTIMAL» BUT REALIZABLE BOTH I
THE SOFTWARE DESIGN. NO A PRIORI

"OPTION 3. PRIORITIZED

WOULD SIMPLIFY THE

0TAKIN6 THE FRAME
REQUIRES WEIGHTING

PULSE OF HIGH
R, THIS IS
N THE SPEC AND IN
WEIGHTS NEEDED.".
PULSES".

CHOICE:

TRACES TO:
R NET: SKED.R
R'NET: XMITJ*.

mCEÄiTINS.REOÜ.RE^T:0PSPR.3.2-*-B.

FINITE RADAR FRAME.
INTENDED ORDERS."-

FUNCTIONAL.

DECISION : SYNCHPONOUS.VS.ASYNCHRONOUS.TRACK.
ALTERNATIVES: "I. SYNCHRONOUS TPACKING (OR RESPONSIVE)

REQUIRES THE LAST RADAR RETURN ON
AN IMAGE. BE USED TO
PRODUCE THE NEXT RADAR
ORDER.

2. ASYNCHRONOUS TRACKING "OR AUTOGENIC"
ALLOW* A TRACK PULSE
TO~BE SENT USING WHAT EVER
STATE IS IN THE DATA BASE.".

CHOICEt
"ASYNCHRONOUS TRACKING IS

SELECTED TO MAXIMIZE THE
ALLOWED DP TIME RESPONSE
FOR PROCESSING RADAR RETURNS.
THIS DOES NOT PROHIBIT A RESPONSIVE
TRACKING IMPLEMENTATION.".

PROBLEM:
"TRACKING CAN BE EXPRESSED AS

SYNCHRONOUS OR ASYNCHRONOUS.".

TRACES TO*.
ALPHA: PICK.CANDIDATES.

TRACED FROM: > 0RI6INATINGJREQUIREMENT: DPSPRJ3.2.3.A.FUNCTIONAL»

O

Figure 6-3 Sample Decisions fro-n Track Loop

6-6

t

„

,„,.,.„,.„ :*.,.*:■ :.■ ,,.«.•--;,■■■:

■■■■■■■ ■■ ■

*

t

ones recommended here seem to be a minimum set and can be augmented to

tailor the process to a specific project.

After documenting all known source specification problems the soft-

ware requirements can proceed with internal baselining. This baselining

culminates with formal approval of the Software Requirements Engineering

(SRE) Configuration Control Board (CCB). The use of the Requirements

Engineering and Validation System (REVS) enforces quality control. Because

of this, the CCB baselining can address higher level issues of whether or

not the software requirements adequately reflect the intent of the source

specifications and to what extent the software requirements provide an

appropriate base for process design. The former issue can be resolved

by analyzing the DECISIONS against the source specification. These can

be categorized into those with major effect on software requirements

and those with minor effect on the software requirements. Baselining may

be deferred until certain major problems are resolved and the number of

minor problems is reduced to an acceptable level. The visible act of

deferring a major milestone can bring considerable pressure to work problems

expeditiously.

6.2 SOFTWARE REQUIREMENTS VALIDATION

The major effort in software requirements engineering is in the vali-

dation phase. Validation begins with static evaluation which is a check of

data consistency. Validation also includes the development of BETA

(functional) models and simulator to test the software requirements for

dynamic consistency. This is primarily a test to verify that the specified

logic is correct in a dynamic sense. With appropriate functional models

(BETAs), a BETA-level simulation can also be used to examine and predict

system level performance as a function of data processing performance.

Validation may include the development of GAMMA (analytic) models

and simulator. GAMMA models are non-real-time algorithms which input and

output the specified data at its elemental level. The purpose of the

GAMMA simulator is to demonstrate that a design solution to the software

requirements exists at least if the real time constraint is relaxed.

6-7

m
-. ■ »| —w-

A sample activity network for requirements validation is shown in

Figure 6-4. The first effort establishes that the completed R-Nets at

the ALPHA level are fully complete and consistent. When this is established,

the DECISIONS related to the cource specifications and the resulting soft-

ware requirements are reviewed and approved. Following this, the require-

ments are completed to BETA level as described in Section 3, and the BETA

models and the BETA data base are reviewed and approved. When the BETA-

level dynamic performance evaluation is completed and all DECISIONS have

been approved (milestone 2.11), then a new requirements baseline is

established at milestone 2.12 and the functional requirements are complete.

In a project in which there are well known design solutions available

for all the processing specified, the functional requirements validation

would end with milestone 2.12, the updated baseline. However, in BMD

systems, and in fact in most modern large scale systems, there are algorithm

issues which present considerable development risk. If this is the case,

the requirements validation is not complete until the computational feasi-

bility of the requirements is established. This is called the analytic

feasibility demonstration. The purpose of this phase is to demonstrate

through simulation that it is possible to process the specified input data

to obtain the specified results. The sequence of activities for this

phase of the effort begins with milestone 2.13 and ends with a second base-

line release of the requirements at milestone 2.22. The intervening mile-

stones are similar to those for functional validation discussed earlier.

The final event is the formal release of the internally-approved specifica-

tion (milestone 2.23).

6.3 SUMMARY

The foregoing is an example of how the SREM activities described in

Section 3 can be related to measurable and meaningful milestones. An

identical approach can be used for the activities described in Section 4.

The activity networks presented here are not intended to be a universal

SREM management plan in which one can fill in dates and names and be done.

Every program is different as is each engineering organization. Therefore,

there cannot be a universal management plan any more than there can be a

6-8

>^m w i'■»t|W|»)pfV.
1« *■»'.*. . r—*-™—w^r-—1„.

. V

•

©
e

CM

LO
0

CM

IS)
Z
o

U
CO
UJ
Q

o
I—

CsJ
I
I
I
I

CO

rsi

©
c

CNI
o

rf UJ LxJ LO

co K-i od ca

< _J
UJ UJ
OO _J >
<c <: uj
aa ;» _J

o
ct: o: <
»— a. t—
<£ a. uj
a < aa

UJ
I—
UJ

llJ UJ

oca:

O uj
O _J

»<
Of-
H- UJ
UJ as

r\j

a
UJ o
i—cr
rf UJ

UJ
ex. UJ 5

^<:
Oh-
•-■u.

o
UJO
Qi—

a
ujca

§0

Q.UJ
Q-Cf.
<.tS)

a

UJ O
IV ►-<

UlUJcC
ZOO
OQ^»-''
•-.rju.

h-itOO
o UJ
ujoa-

>-
no

O
UJQQ
>o
O O a:
CL UJ
Qu a:

o

<

2*

IS)

c
o

<0
-o

to
4-»
c

cr
(U a:

o
oo

t-
o

t.
o

0)

•r- >

<
41

00

U3

6-9

-.•- -w-

■' ^,_5^:^^tm.:, w„fI.1.,i„wl„,^,.

O
UJ
1—
<
-J -J
UJ UJ
o: :*>- r—• UJ CQ r—
(^_J

CVJ

DE
CI

SI
ON

TO
 B

ET
A

AP
PR
OV
ED

SR
E

CC
B

a
UJ „
B<y
3^
UU

o ■^^i; rv CQ
e OOrf

<NJ

CI
SI

ON

SO
FT
i

PR
OV

ED

E
CC

B

00 UJO Qaa:

^5
>—« a
h- UJ
Q. i—

3 z
O UJ o
to a: —*>-
UJ CTl H-S
Q CVJ ooujrf

ZOCJQ
UJ Oc«:>-«uja3

►-4^U.>0
o OOO'-'OO
h- "-•toOQ:
00 O UJCLUJ
UJ uJOQ-a.a:
-J an—tocc i/j
1—1
s:

z
o
1—1

ot—
CD

5^ CM 1^ >- >•
O UJ

a:
o
H-

3
=3 Q r^ S UJ

0 ^-11—
CM

BE
TA

S

GE
NE
RA

oca
O Ui
f-K-

l|s
CM

3 00 CD

-4
uj >- 00
> _JQ O

IT) UJ _J UJ O
_I<Z

•
CM

z •-« UJ

X UJ uJ oo

5 z<i: >-
c_d *—< 00 ao

<! >

1- ^- s. ^- ^^ • UJ
CM oo rf

** £ 00 £

< 3 »—
<Ci~
Q<

z: O
o h-

CO
f— UJ

9 »—
CO UJ _J

1 .J UJ
1 * "O. 3*
j r-CM E UJ

•—" o
a H-H- <

CO UJ UJ • £
zz o 3E • 1 l H" ^t

CVJ oc ae: UJ c9

o
UJ
z

» 1—1
cy-i

<NJ a: UJ UJ
O Q£ 0O 0Q
O <CJ

CM 4 UJ COO

<f UJ UJ
H- PC h- OC
oo F- «C to
a: u. o
i-i o a- >-
U. CO =3 00

■a
a»
3

o
o

c
o

w»

3
a-
c2

o
oo

o

o I
at

>

<
<u

e
3
a»

6-10

t

xwpi "■:>i<f: j«
1:

'
■ ',-■'.& ■■v..-,-:*:: ■^-■',^.:!-lr,m.^';::'^-,-'- ■ ■^KS-^ ■'-:> :■•."■■.:. .,■;-■ sy ■':--:■■■ f.-i'-.v,. :~--C-:'----::::.■■■.■:::■■■'-

I

c

".

EL
AT
ED

EL

o a: >■ >-
UJ ro

oo -J
c\J

DE
CI
SI
ON

TO

BE

TA

AP
PR
OV
ED

SR
E

CC
B

EL
AT
ED

RE
Q,

OO
Z o
1—4 CM NS

R

WA
RE

D
BY

I—
Q.

O f— UJ CO
I-HU. > o
00O o o

(Y •-Hen o:
O

UJ

O Q. UJ
UJO a. a:
QH- < CO

Q a
III UJ
r»1 h-
o < i5
H- -J S
oo uj O

on Q£ •-•>-
—1 J-CQ • oo uK
v OJ ZOOQ

DE
CI
SI
O

TO

SO

UR

SP
EC
IF
I

AP
PR
OV
E

SR
E

CC
B

o
>- ft
»-h-

r^. oÜj S
>-« >—1 f—

CM H-CQ CO
>" •—< z
-JOO Q

^UJ UJ <u. o

CO
CM

o

CM

SO
FT
WA
RE

RE
QU
IR
EM
EN
TS

RE
LE
AS
E

CM
CM •
CM

SE
CO

ND

MA

JO
R

SO
FT

WA
RE

RE
Qo

UP
DA

TE

BA
SE
LI
NE
D

BY

SR

E
CC

B

CM
a

CM

DE
CI
SI
ON
S
R
E
U
T
E
D

TO

GA
MM
A

LE
VE
L

AP
PR

OV
ED

BY

SR
E

CC
B

e
o
o

c-
o

T3

fO

ai

cr
a> a:

o
00

I-
o

i.
o

Q)

Ö

4J
u

E
OO

I

6-11

.

am

mms ^o«nt and vaHdation * the SREM «PProach to s„ftware ,.
-an(„gfu, mnestones cari ™ St;u ^ -d fon.an.ed soch t)Bt

^d measurable. adl'y def'"ed " ""estones that are speolflc

t

1

6-12

HB^^WBÄSS

■ ■ ■ ■■■.—■■.. ■.:.-■ ■ ■ ■■

■ ■*l**t>t*T^'**^i*m*i^

t •■'Hift'l

t 7.0 PLANNING

Planning for software requirements engineering using SREM is unique

in two respects. First, several of the automated features of REVS ran have

a strong effect on scheduling. For example, the automatic simulation

generation produces a simulation in much less time than conventional manual

techniques. Second, very little data exists on the cost and schedule aspects

of implementing SREM.

With these two thoughts in mind it seems appropriate to identify those

planning characteristics peculiar to SREM, organize them into a simple

model and evaluate that model. This approach has the promise of producing

some quantitative measures for SREM planning.

t

To date, there is no usable data on which to base a firm cost and

schedule model for SREM. The Track Loop System used as the example problem

in Sections 3 and 4 was an experimental model used to test and refine the

methodology steps, RSL, and the REVS software. Consequently, the TLS soft-

ware requirements were developed several times and the effect of prior

knowledge cannot be factored out of the data.

7.1 PRELIMINARY GUIDELINES

From the TLS development experience, some preliminary guidelines can

be established. These guidelines form the basis of a cost and schedule

estimation technique.

1) The overall technical coordination of the activity must be
the responsibility of one person. In a small problem such as
TLS, this person can also be a "working" enginepr. In a
large project, this technical management function is a full
time job by itself. This is analogous to the chief of a
chief programmer team.

2) The initial R-Net development effort should not be broken
down beyond the point of assigning one engineer to each
R-Net. The number of R-Nets can be initially estimated to
equal the number of input interfaces plus the number of
independent (asynchronous) output interfaces.

3) The development of BETA and GAMMA models and performance TESTS
is essentially an engineering modeling and programming effort.
These can be estimated by conventional software estimation tech-
niques except that the integration effort is greatly reduced
through the use of the automatic simulation feature of REVS.

7-1

flfflft^ ■nwWHMHNaMmi

. ■ ,^...^,.,^1 ^;c..i^,;--^ , ...:;:-./,L.:^ !^;^.1,..:::,,w.J.. ■^■i^^-:-.v.r^,- ■ . ,; ^ . .^..^ A:^-- '.i:-; .^.-;■ "s ■ , :,=-.^^ .a-.^1---^ .,..-^-.::- ,::;>. ;■.■.:■■; ■".
■ ■

While these guidelines are very preliminary and general, they form a better

basis for estimating than the current practice of allocating 10 to 20 per-

cent of the estimated software cost (derived by cost-per-instruction times

estimated-number-of-instructions) to the requirements development.

f

7.2 C0S1 MODEL

The formalism of the RSL expression of software requirements a.^d the

methodical approach of developing and validating them using SREM suggests

that a formal cost model can be developed. A proposed starting point for

such a modei follows the general form of

xEci • D. N.

where

n

Ci

D.

Ni

a weighting factor equal to the cost per typical element
(equivalent to dollars-per-instruction in software development)

number of elements (ALPHAs, etc.).
4* h

the relative complexity of the i element.

the relative newness (state-of-the-art) of the i element.

the size of the i element.

It appears that the cost of the requirements is sensitive to the

following elements:

t Overall logic and data-flow complexity which can be
reasonably represented by the ALPHAs. ALPHAs are chosen
because:

1) their INPUT and OUTPUT relationships are a direct
indicator of the data flow complexity, and

2) there is almost a one-to-one relationship between an
ALPHA and a logic node or node-branch on an R-Net.

• Functional Models - BETAs.

t Analytic Models - GAMMAs.

*}

')

7-2

^P"*-"^.. liWiWftwiiyi-^»»11 **■■*■»■. *.,"-— ..-M*-^„ ,
■■-■rmimwmmm

'f'ir,;" '■''"v ■';,'s'"'i:'"''* *'"^-«t«»"«m»»»»ii»»^^ -■'■■■'?■".-,: :

i • Performance Allocations - VALIDATION PATHs.

• Performance Measures - TESTs.

• Simulator/Driver Integration - MESSAGES.

One additional factor is the firmness of the source requirements which

directly effects the number of times the requirements engineering work

will have to be redone.

A model of the cost of developing and validating the software require-
ments is then given by the following:

H = S R
L i=l 1 1 1 i-1 1 1

N
Bi

+ KG E CG. ' DG. ' NG. 4 KP E CP. * DP.
i=1 l 1 1 i=1 1 i

+ KT ZCT. • DT. ' nj. +K<?A'
1=1 1 1 i ' J

The parameters in this model ere defined in Table 7.1.

This model estimates the cost of direct man-hours only. Costs for
management, ODC (Other Direct Charge, such as travel), and computer time
must be added.

Ä:

Not only can such a cost model be used to estimate costs before SRE

actually starts, it can also be used during SRE to project cost to complete.

This is done by updating the estimated parameters with real values as they

become available. Cost control is discussed in Section 8.

7.3 SCHEDULING

Having completed a top down cost estimate, that result can be used

to obtain a gross schedule of activities. The cost model must first be

partitioned into six parts.

HA = SR KA t
i=l S X \

7-3

dMMS
i* ■

mf^amimmm nm~: ■■

■ ■ ■ ■ ■■■■■■.

Table 7.1 Definition of Symbols Used in Cost Model

SYMBOL

'A..

'P.

Bi

Pi

KG

Kp

T

DEFINITION

Complexity factor for 1 ALPHA. (Value of minimum complexity
is unity.)

X.L.

Complexity factor for i BETA. (Value of minimum complexity
is unity.)

A. U

Complexity factor for i GAMMA. (Value of minimum complexity
is unity.)

i.L|

Complexing factor i PATH decomposition. (One-to-one
correspondence between a performance requirement in the
source specification to a PATH is unity; more complex
relationships are higher.)

th
Complexity factor of i TEST. (Value of minimum complexity
is unity.)

A.L.

Newness factor for i ALPHA. (Value for completely off-
the-shelf is 0, completely new is 1.)

Newness factor for i BETA. (Value for completely off-the-
shelf is 0, completely new is 1.)

Newness factor for i GAMMA. (Value for completely off-the-
shelf is 0, completely new is 1.)

Newness factor of i PATH decomposition. (Known decomposi-
tions are unity; if trade-off analyses are required, the
factor i;". higher.)

A.L.

Newness factor of i TEST. (Completely off-the-shelf is 0,
completely new is unity.)

Newness factor for SETS. (A fully tested, well documented,
and previously used SETS is 1; others are higher.)

Weighting factor for ALPHA development.

Weighting factor for BETA development.

Weighting factor for GAMMA development.

Weighting factor for PATH decomposition.

Weighting factor for TEST development.

1

7-4

BS^g^rtMiMtMWIWW «"»•

■,. ^, -

••^vi-fte;/--.,-

^

Table 7.1 Definition of

SYMBOL

A..

n

P

t

,Bi

G1

Symbols Used in Cost Model (Continued)

DEFINITION

Weighting factor for simulation integration.

Number of I/O messages.

Size of ith ALPHA in lines of RSL.

Number of ALPHAS (BETAs and GAMMAs).

Number of VALIDATION PATHs.

Number of TESTs.

Size of ith ALPHA in lines of RSL.

Size of ith BETA in lii

^th

mes of RSL.

Size of itn GAMMA in lines of RSL.

Size of ith TEST in lines of RSL.

g^'thlnTr reqU1>eTOntS- (""» - 1. soft 1.

n
HB ' SR KB Z^ CB. rjB. NB. I

HG = SR KG]C CG. DG. NG.
1«! 1 1 1

HP = SR KP £ CP. " DP.
i=l i i

HT = SR KT Z CT. * DT. • \
i-1 1 1 1

Hs = SR Ks Ds M

Then four estimates are extracted as folTows;

H1 = HA 1

U^GJ H2 = HB + |HB +'HG |HS

K^GJ H3 = HG + Ih^TTTg |HS

H4 = HP + HT

Note that H = H1 + H2 + H3 + H4,

Looking at the milestones in Section 5 these are grouped into three

sets. The first is associated with the R-NET development and includes mile-

stones 1.1 through 1.4. The second set, 2.1 through 2.6, is related to

BETA modeling. The final set includes the remaining milestones, 2.7 through

2.23, and Is roughly related to GAMMA modeling. Figure 7-1 shows the three

7-6

".-^^.^i1"* HI**'-***-'**~***;t****'-r***. •n/—-^ „.

i

X

o

(

■

<4

■

(X.
o

(

00 Q 2Z
UJ Ui Ul ■<*

t— t—i O
>• <J»— _l I
•—• O UJ UJ
h- </) z: :> r-
o (.-> • LU >
< «c a: Q r-

DC
H-
*—4
■JC

Q
UI
1—
<
1—1
o
o
in
oo
<c
»/) _J
UJ UJ vo
>-t 2» o
h- UJ CVJ
►-• _l

> »
—* <C
h-f-r-
O UJ
< oa oj

OJ

^Q ujfn
LUUJ > CM

i

►- ui 5: rv.

*! «C Cj CM

>

V)
0)

<

■o

a.

3
O

I

CD

ro
X

o

7-7

:y^' ■""";.* - T- ^^ ' ■ '

sets of activities related to these milestones crudely spread over time

periods T-,, 1,. and T^ expressed in work hours. Then effort divided by time

is equivalent to manloading.

O

For activities related to R-NET development the effort in hours is

approximately H,. Assuming a constant, flat-loaded activity the loading

then is H-j/T, A small group should be working this phase of the require-

ments development. Even on a very large project no more than five engineers

should be directly involved in the R-NET development. Assuming 10 percent

for direct support and 10 percent for management support this translates

into a constraint:

T1 > ye

Schedule times Tp and T^ can also be roughly estimated by examining values

for Hp^Z an^ ^3^3 not1n9 t'iat; these two activities should overlap. For

a small SRE project the following might apply:

H, = 80 man hours

Hp = 400 man hours

H3 = 800 man hours

Then, the planning might select

T, = 40 work hours

Tp = 80 work hours

T3 = 160 work hours

giving a manloading as shown in the top part of Figure 7-2. Since it is

usually unrealistic to expect adequate performance from short assignments,

a better approach is to smooth the total manpower curve somewhat. This

is done in the bottom part of Figure 7-2.

Having obtained a rough manpower curve it is now necessary to establish

a detailed milestone schedule. For a small project such as the one just

discussed it is probably better to lump some of the serial milestones so that

0

7-8

MpMMi -■*'-■■■'im*mv-'■'*■*■■'■'+ -—-*■■■.- "'nn'Kiqf

diMMä
- .■ . '■ ' ■ ■

■ V •, , *■ ..^^■y;WmCTWäfWJt|WaW|WMW^LWttWM^ , ,, . , "^-'

i

t

EXAMPLE:
FIRST CUT KANLOADING

4 6
WEEKS FROM START

10

EXAMPLES
SMOOTHED MANLOADING

4 6
WEEKS FROM START

10

Figure 7-2 Rough Spread of Manpower for Example

7-9

.w,.,......-,....,-.....,.....,, ■||-l[||lm-|iljjllJ

v,-;, ■■.-T^:!jf«.-'-,.>,H«;.v ■'r'-'-sv.,~-,^:j.
■ . ■

a week-by-week measurement is adequate. For the sake of demonstration the

complete set of milestones will be laid out on the seven-week schedule shown

in Figure 7-2 (bottom). Figure 7-3 shows the detail milestone schedule.

The two major activities are the BETA and GAMMA modeling which occur in

parallel. For a small project many of the review and approval milestones

can be accomplished simultaneously.

The schedule in Figure 7-3 shows no slack time. An end-to-end schedule

with no slack time is dangerous even on a small project. Since the SRE

activities are laid out on a seven-week or thirty-five day period with no

slack, then 10 percent or about 4 days is a conservative amount of slack.

The slack should be inserted after the most vulnerable milestones so that

the overall schedule is minimally perturbed if a milestone is missed.

Figure 7-4 shows a revised schedule with slack time (dashed) protecting key

milestones. With slack time on the parallel BETA and GAMMA branches addi-

tional flesibility is achieved since manpower not required during one slack

activity can be shifted to the other branch.

Note that the schedules do not provide the typical periods for docu-

ment preparation, review, and publication. The automatic documentation

features of REVS reduce the need for these activities. The technical and

management review of the requirements is accomplished using REVS gei.'rated

reports. Once approved, the generation of the final documentation is simply

one more computer run using the appropriate RADX directives with REVS.

The planning process has been illustrated using the milestones defined

in Section b for the activities discussed in Section 3. The planning of the

Section 4 activities is accomplished in a similar manner using the H4 term

in the cost breakdown.

w

7-10

1

4mM

~— • ■■■

~» *.'" UiWt -...-,4.,

'

,,,:.■. „, ^]

ms
"'S

•

o

g
Q.

Öl

o

(V
r—
3
-o
Oi

o

7-11

■'■■"■■■■■- ■-'■■ ■^-■■«-■.•"■■^-^.4^'-'!;S!^JW».^fl*;.-~.i!v*i«.-iB*1....-J.,,^ <.>.,„;,■,,««:.•» ■«»-;«:>-,.

i
i

T3
<u

E

ro

3
C7>

O

<U

a»

01

^1

i

£
3

7-12

.v-

■■■"

■
■ ■

... ■ T^„? (. ^ . ^' L

^^p'

(

8.0 MANAGEMENT CONTROL.

The Software Requirements Engineering activity must interface with

other activities during the system development phase. Figure 8-1 explains

the major interests shared by SRE with these other activities. The key

interactions may be summarized as follows:

t SRE supports SE in system definition by accepting the speci-
fications and pointing out deficiencies.

• SRE may question the subsystem allocation because of implemen-
tation problems.

t SRE participates in the overall system cost/schedule planning
and control by providing status data to SE and visibility to
Process Design.

• SRE must work with the other subsystem engineering activities
to define interfaces to a functional level. Process Design
can work to design the detail interfaces. When a referee
is needed the SE must decide interface issues.

• SRE defines the processing via software requirements which
may be modified if real-time implementation is a problem.

8.1 CONTROL MECHANISMS

Management of SREM can be viewed as a two-level process. REVS pro-

vides certain direct, automatic control of the product under development

(the software requirements). As described in Table 8.1 this frees manage-

ment to focus on higher level issues and the implementation of REVS. With

a validated REVS, implementation of its control features is completely

mechanical and can be delegated with confidence. In particular, in Table

8.1, we note the following observations:

• At each level the manager can focus on intent, softness of
decisions, level of detail and schedule performance.

• At the BETA, GAMMA and PATH/PERFORMANCE levels, cost perfor-
mance becomes important. Overkill must be avoided by main-
taining pressure to use the simplest, cheapest models which
will do the job. (Thus level of detail is an issue here also.)

• At the GAMMA level the manager must assess real-time feasi-
bility even though the GAMMA models are not real-time.

■

•,■•■"

-

t
8-2

':-r^~.^.(^..^;-.vr-:--,•..: ^•.--■;^--- -.TM:'.- ^^^-^-■':•^^^5^*H^,^W^^^rW^^■ft^o'.■'■.■ ,--■ :I:^-^^-^:^ ^■:--^-j'^'^--::^-W^;:;-f-'^'

:

to
(U

1/1

01
>

c
■»->

00

3

o

c
o

+->

c

<+-
o

(A

o

CO

0)

-Q

00

^
Q Ö
LU 1 ij

1— rv*
o oo 1—<

to uj z: ZD
LÜ —1 o cr
Z3 u_ ►-< Ö 00 UJ CO
00 a: >-.
KH

to UJ
UJ
0 00

_l O Q >- >
<r. UJ UJ h- c^ UJ »—* a. s: o 1—1 y Q:
a: oo >—• z: _i rV
UJ a: < ►—i C^j u_
o UJ UJ s uu'JJ ii 1 CQ U. 0
< o I— _i 2 >o >»-' ac

a: 2: I-H o 0^ goo LU z:

^
r> M cc u_
0 h- a; eng;

cir UJ
ex. 0

LO U. UJ UJ ^ a: "-u. <s> h- K-
a: O Qa. UJ O UJ X LU <
o u. ^L1- xU h- CQ H-
-3 O oo u. UJ S"^ ^2 < ■2L
< 00 0 _J UJ •^ t-t a. CO UJ 2: 1— UJ ra u. a. U_ H- < 5:

z 2: _i a 0 O 1 z: UJ
UJ (— UJ UJ h- _I 0 UJ _l
l— u. > re _i 00 _J < »—1 s: a.
z: 0 UJ 0 -j 0 _J UJ H- < s: • • >—• co _j to <c 0 < a: < co •-«

•a: • < s Q
x <c 2 »—*
a. • ••• t- •• s: •• —1 • •
._i UJ < <
< CQ CD :>

• •
CO

-J h- _J
UJ _J 2: UJ
> UJ UJ >
UJ :=• z: UJ

to -J UJ UJ _J > 0 —I a:
UJ 0 —■ < HH |> S •—i X S •< 13

H- <e Q- H- o- s:
>- < Z -J UJ LU 3 CO H- >- < >- CQ QC

00 Q H
a 00 31 1— 3: UJ X
UJ 1 to 1 1- -i h- O 1-
a UJ t-H ■—1 »—t -2Z. ►—1

•—« >■ s >- >- 3 0Q 3 3 > <_) UJ O O >-H

o 3B H- SE JE >- to >- OC >-
5 UJ UJ UJ UJ CJ <c 0 0 O
a. 1— _J UJH H-z: u, UJ z: u_ UJ z:

CO CL. > co co UJ 5; u. UJ a: > UJ
J -i 2: 0 ►< >-i 1— 0 >- UJ 0 F
o CO 0 QQ (/) CO CO 3 UJ 00 Q. co to
oc >- z 0 <: z: z:--! rf s: -•

^ t—1 to
"v^ <C M

1- h- O 0 0 to 00 to
z ►-• CJ —J

_l CO <
UJ 00 2: LU ►— = re UJ z

o
l 1 _J 0

in • 0 1— xo
o « z: _j Q:

OQ 0 < =3
^ _JO < 1—0

<c<c "^ <C >i.
< ►-< z: t— u- z: z; a u_ UJ a U. Q
UJ to OS <_) 0 cc 2 a: 0 oc: Q: z: ooc:
O f-i UJ Z3 UJ UJ < 1 <: 0 «t
«a: OK- a:
Od UJ z »—

_IH- h- 3 -iz: 3 *-H _J 3
_J sr X Q. _l O Q- 1— -ID.

« ■ 1— Q ►-• CO < 1-1 UJ ID rf Z =) «c < =>
< < 0
X <: : C 1—1

a. • ••• 1— •••• s: e • • _J • •
3 s s $

8-3

MH

t Note all of the control which REVS gives cheaply and
quickly. Previously, managers had to strain to get this
kind of visibility.

O

The major managerial issue? identified in Table 8.1 require mechanisms

outside of REVS. These are the more widely used managerial controls, and are

much more effective when based on the timely, complete, and organized infor-

mation provided by REVS. The kinds of control mechanisms used for these

issues are shown in Table 8.2 and are summarized below:

• Internal reviews can be used to establish confidence in the
software requirements by addressing items checked in the Table.

• Starting with a parametric cost model, projected cost can be
estimated as actual parameter values are determined (e.g.*
number and complexity of ALPHAs).

• Earned value as a measure of progress toward each milestone
can be used in the C-SPEC sense to evaluate cost/schedule
performance in a continuous fashion. Earned value can be
quantified by using number of ALPHAs, BETAs, GAMMAs, PATHs,
and TESTs weighted by complexity factors.

• The milestone schedule is a standard schedule performance
control best implemented by public display.

t Reviews with the system engineer should help understand
questions of intent and softness of decisions plus adequacy
of level of detail.

• The process designer should be involved in reviews of level
of detail and real-time feasibility (includes storage capacity).

8.2 CHANGE CONTROL

The process of change control is a critical one on a large, complex

system development activity. Figure 8-2 shows how collected decisions are

folded into the baseline as scheduled updates. The updates are inserted

at points in the schedule where they are likely to have significant inputs

from, within the SRE activity and from System Engineering and Process Design.

Thay also follow specific measures of the software requirements, namely the

initial dynamic evaluation and the initial feasibility demonstration.

W

8-4

I
11

m,

admttm "

»■MMV.ll^'l«^^aW»».M.i"»-v -»■i«,>WK».*»*^'i «'.A?-»«-.. '.»i-i*f'«

t

t

in
Oi

ISI

o
i-

c
o

cn
c

o
IT3

o

I/)
E
(/i

*i—
cr

o

o

C
O

CVJ

00

at

(/)
00 Z 3
UJ O LU
O >—< i—< X X
O CO ?-
a: LU uj
a. a a:

oc
s: UJ 3
UJ UJ UJ
t— z: >-i X X X
CO ►-• >
>- es UJ
co 2: a:

UJ

UJ
z UJ

5; o_i
(— Z3
CO Q X
UJ UJ

Sc _i a: 2 •-1 0
o s: 00
UJ

a
i UJ UJ
o z rj
a: Ct _l X X
(— < <
z UJ >
o
<J

h-
ee. x
UJ LU
H- z:

H- Ul Ui
co z; a; X
0 < ra
0 aJ co

^

«C <
a. UJ

s:

_J
< CO
2= 3
a: UJ
UJ l-H X X X X
H->
Z UJ
i-i a:

>-
LU »—

1—
O
SB _J

2: CO »-H
UJ CO LU ^» aa
1— LU _l 0 0: t—<

TZ: Z H-l z: O
U-

to
t—t F

u. 3 g LU
C_) 0 LU S LU U.

a! LU
a.

to O 0 Q-
UJ

I«I Oi 7Z. U_ at: LU s:
CC _J O O LU _J »—1

ÜJ O CO Ul H4 a. =3 1—
a: ta o: ui 0 to —1 Q 1
o<: h- 13 oc t-H LU h- LU _i
-3 z: z co ZD O s to x: <
g^S^J O LU LU 0 0 LU

tO O —I 0 to o:

8-5

jjm

■

.

^0

i
Ui a

sä
UJ

Z
O

UJ

£

<

a.

ae

o
CO

cy-i
UJ UJ
Q; >■

UJ
UJ _J
ai

if pa.

UJ

UJ
CQ

c

co

o

TO
Q.

3 c

K

CNJ

I
cn

1

o

ÜUtta
J __J,_;, ..-.,;..,

-.s, ._».::—,%--,_

■-W1-""
'

-■«II. -,'■..• ^^r„...^r„.^ .,,,„,,.,- „ ,„. :, ,,■,-.,,-.,,

t 8.3 SELLING THE SOFTWARE REQUIREMENTS

Both the System Engineer and Process Designer must "buy off" the soft-

ware requirements. SREM possesses key features which should assist the SRE

manager in effecting the buy-off. These are explained in Table 8.3 in terms

of answers to concerns of both System Engineering and Process Design.

€

I

SHlff^^^"^^^
"",""*FP «*•*■

—r-«l ■" >.M. ■ «.., ,

-w

z

a:

i—t

00
LU
o

CD

5 UJ
zr Q »—• 2? •—1 1 3

i— Ui
oo 1- UJ
z UJ <_)
o _J z
o 1 r»- <

UI (—
o o _i a. fv.
o o ca UJ y*
1— i—i o fy

M oo o »—«
-J a: < «t U.
1—1 < UJ
<a: UI U. UJ oo
H _J a: J—
UJ o z •X z / a o 2 UI

00 H-4 s:
u. l_ f».. ^- U- UI
o Z (— < o Q£

O" UJ z H- oo »—i

_J UJ z: uj z Z3
LJJ »— UJ 1— UJ oo cy > < o: oo 2: »—• UI
UJ => H-l »-4 UI a:
_J o- =5 00 _J »—

LU crz Q. cC UI
00 Q UI o 2: a: a: -«< a: o (-H 3 <

• • • * it

r— CM CO **• m

OO

c^

>- t—« >—>

(—3 -J
>—■ a; ui
_i oo ui ui oo
>-i 3 ui oo «.c
0Q ui z z CO
tX ^t t-i C3
UJ 5» t3 a. Q
O UI Z OO UI

a: ui ui _J 2
oo

,■

00

oo <

UJ UI
r- ac

CO

z UJ i«: oc
t^ UI Ol-
^* >— oo "-i z

a:
z >- => o

oo

•—• Z O •-'
OO O >-< _l
>—» i-^ f— UI
o»— <: </)
UJ< z3 «a:
Q ^ _J 0Q

Q 5 > Q
UJ > UI UI
I— UJ _l
Z O _l
UJ o >-« o

r> i- < (—
tJ<C z z

B ►- >- o
00 Q O

u. oo ui
UJ H- 31
a z o

ui CO
o s. -^
I— UJ (—

OC 0O
UJ •-• O
CO =3 O
z cr o ui a:
a. oi oz
to u. o
UI UI t—i
o: or co t—

<c UJ «c
i<: 3: ca :-3
o f- z _i
>—« U. et <C
=> o 3: 3»
cyto o ui

oo

o;

s ui

3: u_

ui >
o; UJ
CO _l

CO
_l>
co IU
ecac

Q 3: Q:
£ UI UI
Ull-H z
a > C3

Ul "HI
>- a: «^
|— UJ
i-i UI Q
-is:
»-) i-t (/I

cai
»-4 I UJ
CO . o

ui UJ a;
u. o; a.

oo

oo

a: UJ
I- o

zo
_J to
UI i—<
CO o
<C ui
03 O

«

00

CD

UI

oo

en

CO
h- a:
z UIO
UI ou. LU
E: UI a: -J
UI 1— 13 >- =)
a:< oo: 25 9c
l-H ^Ji oo<a: Sfä r) co 00 o-z Z (•) 0- o en
ä^ •-• UI z CO >-

oo ^^.«^
t-to (/> UI HH »-

UI o UI z »- oo «a:
a: >- ui ÜJ < o
< -JCL ZUIh- ooe:
3 _J to <a£z

X < UI
o

h- ra to u. r-.
U. U. UJ o z: —i UI
CDJZL3
cot— a:

CUI < ca
>-<_ J H-»- Z

i—< rD
o<c o
Q U. 00

< U i
XCLZ:

< _J<
X LU X

3 to»-« 3 Q O

• • •
.o

8-8

>■*-"—"■■" '■———•—-

.....

9.0 CONCLUSIONS

This manual has attempted to explain bcth the technical and management

considerations in the development and validation of software requirements

using the tools and techniques of SREM. The engineering and management

principles explained here are not new -- they are the result of hundreds

of man-years cc experience in large-scale r3al-time software development.

The discipline of RSL and the power of REVS are new, as is the formalization

of the detailed steps to be followed in their use.

This manual will not make instant engineers or managers out of in-

experienced people. It will, however, guide the experienced engineer and

manager in the application of RSL, REVS, and SREM techniques to obtain a

software requirements specification which is superior in terms of the

qualities of a good specification discussed in the opening Section.

.

t

9-1

•mi^tK- „, _. ,, ^ :

(
APPENDIX A

RSL TERMINOLOGY

^imß

A-l

_. ^»^^ipWWni/itilii. »^^»IMiiWt^li'WipWi1" •■"^»'^»'^piilWIJipilfl^

«ICEDIW3 PI» .KOT ifÖJSÄD
tfiitiiiit'i1

> ■fm,''''***r,,,'***'~mi''m**t' r**"

^iWRtf^i

(* * PffOCCSSINC STEP IN THE fUNCTIONAL REOUl»C»<ENT«
DOMAIN, »).

91*VC1on APPLICABILtTVl NET,

«LCHiNT.Tmi

EUCMtNT.TVPEi

ELEMENT.trPEl

DATA
(• A SINGLE ITEM OB SET er DATA TH*T IJ SPECIFIED

AND THAT WILL EITHER BE REQUIRED IN THE
(»EAL-TI»*E SOFTWARE OR IS NEEDED FOR
DESCRIPTIVE PURPOSES, •),

DECISIAN " •
(e THE DECISION THAT HA« PEEK MADE TO fNABLE

BEOUIREHENTS TO BE TAKEN FROH THE OF?PR TO THE PPR,
THIS HEAN8 THAT THE REQUIREMENTS ARf NOT SIMPLY
ALLOCATED, BUT HAVE BEEN SUBJECTED IP
DERIVATION, •),

ENTITY CLASS
(• A^CENERAL CLASS OF »OBJECTS" IN THE PE*L «OPLr;

OUTSIDE THE DATA PROCESSING SYSTEM /NO WHICH IS
IMPORTANT TO IT, FOR EXAMPLE, AN EfTITY.CLASS
MIGHT BE RVS OR INTERCEPTORS, THE fNTITY.TYPES
MIGHT BE DETECTION, PO1ENTIAL.RV, It£NTIFIEO_RV,
ETC, •),

CNTITY^TYPE
(• A SPECIFIC TYPE OF "OPJECT* IN THE FEAL WORLD

OUTSIDE THE DATA PROCESSING SYSTEM /ND WHICH IS OF
IMPORTANCE TO IT, WHEN A SPECIFIC 1VPE OF "OBJECT"
IS DETERMINED TO EXIST IN AN ENTITY CLASS, FILES
AND DATA HAY BE TEMPORARILY CREATED TO MAINTAIN
TigrftPHArrftN m*i\y TT »J ,

ELIHENT^TYPEl EVENT
(• AN IDENTIFIED POINT THAT EXISTS IN 1 HE PROCESSING

OF ONE OR MORE R^NETS OR SUBNETS ANf WHICH MAY
CAUSE THE ENA6LEMENT OF AN R.NET, •},

«TBUCTURE APPLICABILITY! NET,
STRUCTURE APPLICABILITY! PATH,

ELEMENT.TYPEl

ELEMENT.TYPEl FILE
(• AN AGGREGATION OF INSTANCES OF DATA, EACH INSTANCE

OF WHICH IS TREATED IN THE SAME MANNER, «O,

ELEMENT.TYPEl ZNPUONTERFACE
(• A "PORT" BETWEEN THE DATA PROCESSING SYSTEM

AND THE REST OF THE 8MD SYSTEM WHICH ACCEPTS
DATA FROM THE OTHER SYSTEM (E,C, THE
RADAR.RETURNS), •),

STRUCTURE APPLICABILITY! NET.

(

ELEMENT.! V^ l

ELEHENT.TYPEl MESSAGE
(• AN AGGREGATION OF DATA AND FILES

THAT PASS THROUGH AN INTERFACE AS A LOGICAL
UMT, *),

BRIG INATINGlRECUlREMENT
(• THE HIGHER LEVEL (DPSPR) REQUIREMENT FROM WHICH

LOWER LEVEL REQUIREMENTS (THE ONES DESCRIBED IN
THE RSL) ARE TRACEABLE, •).

ILEHCNT.TYPEl OUTPUT.INTERFACE
(• A "PORT" BETWEEN THE DATA PROCESSING SYSTEM

AND THE REST OF THE BMO SYSTEH WMICH TRANSMITS
DATA TO THE OTHER SYSTEM <E,C, THE
RADAR COMMANDS), *),

STRUCTURE APPLICABILITY! NET,

v^mimHißmmmiH

ELtMCNT.TYrH «BFeRMANCE.BrnumHENT
(« *N *N*LVTIC PERFflRMiNCE »EQUIREHENT CR

NON-STI^ULUS-RESPB^SE TIMING Rtf:UIRE''ENT
WHICH 15 TO 61 MET BY THE RE*L-TI^E 8ÖFTW*BE. •).

t
ClCMtNT.TYPCl

EWtHENT.TYPEl

R_N£T
(• THE PROEB if LOGlCiL PRBCESSINC STEPS THAT HU8T Bt

PEfFflRMED. AN R^NET M»Y C')NT*1^4 *NDS, CRS» ANO
FOR EACH NflOESI TT MUST ^E ENAHLEO A^O TERMINATED,
THE PHflCESSINC STEPS ARE ALPHAS BR SU6MET5 WHICH
MAY §E EXPANDED INTO LO**ER LEVELS BF DETAIL, AN
»INCT MAY ALSO CONTAIN VAUIDATIBNIPOINTS, EVENTSI
AND INTERFACES, *),

REFERENCE
(• 56URCE MATERIAL FER REQUIREMENTS, •),

CLEHENT.TYPEl SUBNET
(• THE 6R0ER BF LOGICAL PRBCESSING STEPS THAT MUST PC

PCRFBRMEO IN BROER TB PEPFlRM THE REQUIREMENTS OF
THE PRfiCFSSlNG STEP THAT REPRESENTS IT AT THE NEXT
HIGHER LEVEL. •),

STRUCTURE APPLICABILITY! NET.

ELEMENT.TYPEl

ELCHINT.TYPEI

SUBSYSTEM
(• A PART CF THE 6MD SYSTEM (SUCH AS RAO*R) WHICH

COMMUNICATES WITH THE DATA PRBCESSING SYSTEM, •),

8YN6NYM
(• A 8YN6NYH IS MERELY AN ALTERNATE NAMf THAT

CAN BE USED IN PLACE BF THE PRIME NAKE. IT
IS USED AS AN AP8REVIATICN IN MBST CASES»
BUT MAY BE USED FAR BTHEH REASBNS ALSO,
NflTtl IN AN <l-UMtNT ITMt LlST>, "ALt*
ALWAYS IMPLIES "ALL EXCEPT SYNONYM», •).,

ELCHENT.T»PEI UN8TRUCTURED_REQUIREMENT
(• A REQUIREMENT THAT MUST BE PASSED T9

THE REAL-TIME C8DE BUT THAT OBES NBT
STRUCTURED FRAMEWBRK PRBVIDED BY RSL
MIGHT BE USED BECAUSE THE REQUIREM£N
T88 UNIQUE TB JUSTIFY OEFIMITIBN OF
CLEMENT, A NEW RELATIBNSHIP, BR A NE
ALSO MIGHT BE USED BECAUSE THE HEOUl
DOES NOT CARE TB DESIGN A NEW CONCEP
REnUIREM^NT, BR BECAUSE THE REOUlREf
A DESIGN LIMITATION THAT SHOULD BE 0
IN ENGLISH TEXT, (AN EXAMPLE BF THE
REASON MIGHT HE PRECLUSION OF USING
MULTIPRUESS8R WITH ASSOCIATIVE MEMO

THE DESIGNER OF
FIT INTO THE

THIS ELEMENT
T IN QUESTION 13
A NEw TYPE OF
w ATTRIBUTE, IT
REMENTS ANALYST
T TO FIT THE
ENT IS CLEARLY
ESCRIBED
LAST

A
RV.) •),

CLEHENT.TYPEI VALIDATION PATH
(• THE PATH OF PROCESSING OVER WHICH THE QUANTITATIVE

VALIDATION TESTING WILL BE PERFORMED, *),

CLCHCNT_TYPC| VALIDATICN.POINT
(• A LOGICAL POINT IN THE PROCESSING AT WHICH TIMING»

VALUE. BR PRESENCE DATA MUST BE OBTAINABLE IN THE
REAL-TIME SOFTWARE IN ORDER TO VALICATE THAT THE
REQUIREMENTS HAVE BEEN FULFILLED, •),

STRUCTURE APPLICABILITY! NET,
»TRUCTURE APPLICABILITY! PATH,

KLCMENT.TYPEl VERSION
(• THE AGGREGATION OF REQUIREMENTS THAT ARC T8

APPLY AS A UNIT TO THE DATA PROCESSING
SYSTEM AT A PARTICULAR TIME, LOeP„l»
t8BP_2» ETC, ARE VERSIONS, AS IS Ah I«C
SYSTEM, •),

o

A-4

■-T Titr ■—im ■T nmm.

mJ*

■ ■

t

ftCumsNSHiPi Associms
<• TELLS *<-nC* DATA ANO FILES

COME iNTfl EXISTENCE WHEN THE DATA
PROCESSING SYSTEM (SflHC ALPHA) CREATES AN
INSTANCE IF AN ENTITY.CLASS OR AN R_NET IS
E4ABLED, *),

COMPLEMENTARY RELAT I 3NSHlf-5 ASSOCIATED (»WITH«),
SUBJECT! £NTITY_TyPE, ENTn?ICL*S8,
eBJECTl DATA, FILE.

•ELATI8«SMIP| C8HP1SE8
(• TELLS WHICH ENTITYlTVPES ARE HEMBEPS 8F AN

ENTITy_CL*SS. •).
COMPLEMENTARY PEL AT I5NSHIP | COHPOSEO ("«F»),
8UBJECTI ENTITY.TYPE.
OBJECTl ENTITYICLASS.

RELATIONSHIP! CONNECTS (•TO»)
(* TELLS WHICH SUBSYSTEM THE INPUT_INURFACE OR

OUTPUT.INTEBFACE COMMUNICATES KITH, •),
COMPLEMENTARY RELATIONSHIP! CONNECTED ("TO"),
SUBJECT! iNPUTllNTERFACE, OUTPUTllNTERFACE,
OBJECTl SUBSYSTEM.

RELATIONSHIP! CONTAINS
{• TELLS THE IDENTITY OF EACH CONSTITUENT PART OF EACH

INSTANCE IN A FILE, * DIRECT I^PLtMENTATION IN
SOFTWARE WOULD USE THIS RELATIONSHIP TO GIVE THE
MAKE-UP OF RECORDS IN FILES, •),

COMPLEMENTARY RELATIONSHIP! CONTAINED ("IN»),
SUBJECT! FILE,
OBJECT! DATA,

RELATIONSHIP! CONSTRAINS
(« I'JENTIMES T! UHICH ViLI0ATreN>lTH(3) THE

PERFORM*NCE_fiEQUIPEMENT APPLIES, *),
COMPLEMENTARY RELATIONSHIP! CONSTRAINED ("BY"),
SUBJECT! PERFORMANCE_REOUIREMENT,
OBJECTl VAHDATION_PATM,

RELATIONSHIPI CREATES
(• TELLS WHICH PROCESSING STEPS CREATE THE INSTANCE

OF AN ENTITYlCLASS. •),
C9HPLEHENTARY RELATIONSHIP! CREATED ("BY"),
SUBJECT! ALPHAi
OBJECTl ENTITY.CLASS, . ,

•

RCLAYIONSHIPl DELAYS
(• THE ENAPLEHENT OF R.NETS BY THE OBJECT EVENT IS

POSTPONED FOR THE AMOUNT OF 'IME SPECIFIED BY
THE DATA, •),

COMPLEMENTARY RELATIONSHIP! DELAYED ("BY"),
8UBJECTI DATA,
OBJECT! EVENT,

RELATIONSHIP! DESTROYS
(• TELLS WHICH PROCESSING STEPS DESTROY AN

INSTANCE OF THE ENTITYlCLASS, •),
COMPLEMENTARY RELATIONSHIP! DESTROYED ("BY"),
8UBJECTI ALPHAi
OBJECTl ENTITY_CL*SS.

RELATIONSHIP! ENABLES
(« WHEN THE EVEHT(S) IS (ARE) PASSED TwROUSH BY THE

CONTROL FLO« ?N AN R^NET» OR WHEN DATA ARE
AVAILABLE AT AN INTERFACE (AS DEFINED IN THE
INTERFACE DEFINITION), THE FUNCTIONAL PROCESSING
INDICATED ON THF. R.NfT CAN BE BEGUN, •),

COMPLEMENTARY RELATIONSHIP} ENABLED ("6Y«),
SUBJECT! EVENT, INPUT.INTERFACE,
BBJECTl R.NET,

A-5

-&> ~^- ■"'^^'v.'- ■"-■■■

ifß <• ttfl^li 4N *.TPPN«TE N»np F«0 »N PLE^FNT. THE
tRJlIC" IS r»',(,£0 THF OCJMC NtME, T>-F St'ftJECT N»ME
C*K 9E USm rOU ir.PlT T« T^E *53M, EUT iLL
BEL*TI9KS-IfS. »TTBIBUT^S» *ND ST^^CTURES *S
OEFI^tD ARS ACTü*Li.V C<-4R«CT£aiiTIC! fiF T'lJE »»SI»'?
NAHE, •).

.fxei rx-t.'isv SFLiTirMSMIPl EQUATED ("TO'K
i«b,"E;Tl ITNCNYM,
JöJEC't »UL,

OtL'TleNSMlH EXPLAINS
(• TME »EFFSEMCt EXPLAINS THE BACKGB9U»0

INfB^HATIBN AB9UT THE ORJECT EirnENVS. •),
f'fUFKE^TtRY l»flATIBNSHI»l EXPLAINED (•BY»),
.,)■:. ,r-Tf (ifrF»CncE,
CöJtCTi ALL EXCEPT RJ.FEPENCE.

9*1 *7T9N5H2P| FCBMS
(• INDICATES THE ALPHA WHICH DEFINES A HESSA3E

T8 BE PAvSED THR5UGH 4N BüTPUT^lNTERFACE, «O,
C^oLEMENTAtiY RELATIS'.SHIPI FARMCO (»PY»),
Si,?JECT| «.»"A.
BBJfCTl »"EFSACE,

RtLATlSNSnlPI IHPLEHE^TS
(• TELL'. THE vCPr>I|,,J! TP WHICH THE ELE^E^T, AS

DESCRIBED, APPLIES, •).
:r>',lEuENTARY PELATIPNSHlPi IMPL£HENTEO ("BY"),
S'jRJICTl ALL EXCEPT VERSION,
CPJEtTt vtRSIBN,

OFLAI'IONSHIPI INCLUDES
(« INDICATES T«. nlt^AHC^ICAL StLATIftNSwIr oET'ctcH

DATA. IF A INCLUDE« 3# THEN OBTAINING A WILL
»MAIN B, •),

C'HPl.rHENTABY PEL»TI9NSHIP| INCLUDED ("IN»),
5iJBJ?CT| DATA,
8BJCCT1 CAT*,

RELAHONSHIPI INPUTS
(• INDICATES THAT THE NAMED ELEMENT INPUTS THE

OBJECT fLEHENT(S), •),
r^PLEHENTABV RFLATIINSHIPI INPUT ("TB«),
£u<»JrCT| ALPHA, VALIOATIBN^POINT,
eSJECTl DATA, FILE,

RELATIBNSHIPI MAKES
C* TELLS TM1£ IDENTITY OF DATA AND FILES THAT

HAKE UP A MESSAGE, *).
COMPLEMENTARY RELATIONSHIP! MADE ("BY»),
SURJECTl DATA, FILE,
MJttlt MESSAGE,

BELATIe^SMIPi ORDERS
(• THE ELEMENT ON WHICH THE INSTANCES ARE

BRDEPEO IN A FILE. •),
COMPLEMENTARY RELATIONSHIP! ORDERED CBY»),
8U9JECTI DATA,
BflJECTl FILE,

RELATIONSHIP! OUTPUTS
(• INDICATES THE NAMED ELE-ENT OUTPUTS THE

OBJECT ELEMENT(S), •),
COMPLEMENTARY RELATIONSHIP! OUTPUT (•FROM«),
SURJECTl AL^HA,
OBJECT! DATA, FILE.

0

1
A-6

■■■■■■

AtLiTIONSHlM PASSES
(* INDICATES THE INFOBMATIftN NHICH PASSES THROUGH

THE INTERFACE, *),
COMPLEMCNTARV RELATIÖNSMIPi PASSED CTHRflUCH"),
SUBJECT! iNPUT^INTERFACt, OUTPUT'INTERFACE,
OBJECTl MESSAGE.

HCIATI8NSHIPI SETS
(• TELLS WHICH ALPHA SETS THE ENTITV.TVPE Of AN

INSTANCE IN AN ENTITY_CLASS, •),
CÖHPLEHENTARV RELATIBNSHIPi SET ("BY''),
8UBJECTI ALPHA4
OBJECTl ENTITY.TYPE,

RILATI6N8HIPI TRACES ("To")
(• TEJ.LS THE HIGHER LEVEL (ORIGINATING) REQUIREMENT

FRBH WHICH THE ELEHfNT WAS TRACED (ALLOCATED),
A DEFAULT ORIGINATING REQUIREMENT IS "NflNE",
WHICH INDICATES THAT THE ELEMENT IS DERIVED,
NE WOULD EXPECT THAT THg ATTRIBUTE
"ARTIFICIALITY" wflULD HAVE VALUE
■ARTIFICIAL" IF THE ELEMENT 13 TRACED FROM
■NONE", HOWEVER, THIS «AY BE UNTRUE IN
CASES WHERE AN ARBITRARY HEURISTIC MUST BE
EMPLOYED. •),

COMPLEMENTARY RELATIONSHIP« TRACED (»FROM«),
SUBJECTI 0RIGINATING_REQUIREMENT, DECISION,
OBJECTl ALL EXCEPT ORICINATINC.REOUIREMENT,

c:

ATTR1BUTEI ALTERNATIVES
(• THE ALTERNATIVES THAT HAVE BEEN ENVISIONED To

RESOLVE THE PROBLEM, *),
iDPLirARl.C T«| OFCIStON,
VALUE! TEXT,

ATTRIBUTE! ARTIFICIALITY,
APPLICABLE TO! ALL.
mUEl ARTIFICIAL

(• THE ELEMENT HAS BEEN DEFINED FOR EXFLANATORY OR
EXECUTAB1LITY PURPOSES IN THE REOUIfEVENTS
STATEMENT AND NEED NPT BE PRESENT I* THE REAL- THE
SOFTWARE, •),

VALUEl IMPLEMENT>RECISELr
(• TH£ ELEMENT MUST BE IMPLEMENTED IN THE REAL-TIME

SOFTWARE EXACTLY AS DEFINED» NO CH/NGES SHOULD BE
CONSIDERED UNTIL PERMISSION IS OBTAjNCO FROM THE
REQUIREMENTS «NALY8T. •),

VAUUtl IHPLEHENTIAPPROXIMATELV
(• THE ELEMENT MUST BE IMPLEMENTED IN THE REAL-TIME

SOFTWARE, BUT THE PRECISE IMPLEMENTATION IS LEFT TO
THE PROCESS DESIGNER, OF CflURSE, THE DETAILED
IMPLEMENTATION MUST BE VALIDATED BY THE
REQUIREMENTS ANALYST. •),

VALUE! VALIDATION
<• THE ELEMENT IS NECESSARY FOR DESCRIBING

PERFORMANCE REQUIREMENTS BUT IS NOT
REQUIRED IN THE REAL-TIME SOFTWARE. •).

t

ATTRIBUTE! BETA
(• THIS PROVIDES THE PROCEDURAL CODE (HHICH IS NOT

INTERPRETED BY THE RSL PROCESSORS) FOR FUNCTIONAL
MODELS, IT IS PASSED TO THE SIMULATION GENERATOR
AND, SUBSEQUENTLY, TO THE COMPILER, •).

APPLICABLE TOl ALPHA,
VALUEl TEXT,

A-7

-U-

-'■—-

ATTRIPUTtt CHOICE
(• THE 0CCISI8N F«BH *MflNC THt ALTERNATIVES WITH THE

RATIONALE FOR THE DECISION, *).
APPLICABLE T8| DECISION.
VALUEl TEXT,

ATTRI8UTCI CrtHPLETENESS,
APPLICABLE TOl ALL.
VALUEl INCOMPLETE

(• THE ELEHENT'S DESCRIPTION IS KNflWN TO BE
INCOMPLETE, THEWEFORE, READERS SMOHLO 8E AWA3C
THAT, EVEN IF ALL RELATIONSHIPS, ATTRIBUTES, AND
STRUCTURES ARE STATED, THE ELEMENT IS STILL
INCOMPLETE. INFORMATION ABOUT THE ELEMENT SHOULD
BE EMPLOYED ONLY AT THE USER'S-OWN RISK, •),

VALUEl CHANGEABLE
(• ALTHOUGH ALL RELATIONSHIPS, ATTRIBUTES» AND

STRUCTURES "AY flE DEFINEO FOR THE ELEMENT, SOME OF
THEM WILL PR0HA9LY BE CHANGED, INFORMATION ABOUT
THE ELEMENT IS BELIEVED TO BE CORRECT» BUT IT IS
SUBJECT TO CHANGE, •},

VALUEl COHPLETE
(• THE ELEMENT'S DESCRIPTION SHOULD BE ASSUMED T9

HE COMPLETE AND HILL PROBABLY NOT CHANCE. •).

ATTRIBUTCl DESCRIPTION
(* TEXTUAL DESCRIPTION, •),

APPLICABLE TOl ALL,
VALUEl TEXT,

ATTRIBUTCl ENTERED_BY,
APPLICABLE TOl ALL.
VALUEl TEXT

(• THE IDENTITY OF THE LAST PERSON TO ENTER
IHFORMATION ABOUT THE ELEMENT, •),

ATTRIBUTEI EXTRACTOR
(• PROCEPUtAL CODE IDENTIFYING F«R WHICH INSTANCES

OF FILES AND ENTITIES THE DATA INPUT TO THE
VALIDATION>OINT IS TO BE EXTRACTED IN THE
REAL-TIME SOFTWARE, •),

APPLIC*BLE TOl VAlIOATION_POINT,
VALUEl TEXT,

ATTRIBUTCl GAMMA
(* THIS PROVIDES THE PROCEDURAL CODE (HHICH IS NOT

INTERPRETED BY RSL PROCESSORS) FOR ANALYTIC
MODELS, IT IS PASSED TO THE SIMULATION GCNERATO*
«NO» SUBSEQUENTLY» TO THE COMPILER. •).

APPLICABLE TOl ALPHA.
VALUEl TEXT,

ATTRIBUTE! INITIAL^VALUE
(• THE INITIAL.VALUE A DATA ITEM IS RECUIREO TO

HAVE IN THE IMPLEMENTED SOFTWARE, THIS VALUE
HILL BE ASSUMED BY THE DATA ITEM WHEN IT COMES
INTO EXISTENCE IN A SIMULATION. •).

AMLZCABLC TOl DATA,
VALUEl NUHCRIC.
VALUEl TEXT,

A-8

miijir' ■%! , „..*-*■*"**

niiirjImnHLH •

ATTHISUTEl LflCAtlTV,
APPLICABLE T9| 0*TA, FILE,
VALUEl GL9B*L

(• GLOBAL OAT* AND FILES HAY BE
ASSOCIATED WITH ENTITVlTYPES 8R
ENTITY-CLASSES 8R HAY BE IN THE
GLOBAL DATA BASE. •).

VALUEl LOCAL
(• LNCAL DATA AND FILES ARE

CREATED AND INITIALIZED F8' UCH ENABLEMENT
OF AN B.NET, *),

ATTPTBUTEl HAKIHUH TIME,
APPLICABLE TB| VALIOATION_PATH,
VALUE! NUMERIC

(• THE HAXIHUM TIHE THAT CAN BE TAKEN U TRAVERSE THE
VALIDATION PATH, •),

ATTRIBUTEl MAXIHUH_VALUE
(* THE MAXIHUH.VALUE APP'LIES TO DATA VALUES AND

EMPLOYS THE UNITS STATED IN TH£ UNITS
ATTRIBUTE, *),

APPLICABLE TOl DATA,
VALUEl NUHERIC,

ATTRIBUTEl HINIMUH.TIME
(• THE HINIMUM TIME THAT CAN BE TAKEN TO TRAVERSE THE

VALIDATION PATH, •),
APPLICABLE TOl VALIDATION_PATH,
VALUEl NUMERIC.

ATTRIBUTEl MINIMUM_VALUE
{• THE KINIKUMJ/ALUC APPLIES TS DATA VAJ.ÜC8 AN5

EMPLOYS THE UNITS IN THE UNITS ATTRIBUTE, •).
APPLICABLE TOl DATA.
VALUEl NUMERIC.

ATTRIBUUl PROBLEM
(• THE PROBLEM THAT HAS LEO TO THE NEEC FIR A

DECISION, •),
APPLICABLE TOl DECISION,
VALUEl TEXT,

ATTRIBUTEl RANGE
(• THE RANGE OF THE DATA IS ENUMERATED HERE,

IT IS MEANINGFUL ONLY IF ENUMERATION IS THE
VALUE OF TYPE, O,

APPLICABLE TOl DATA.
VALUEl TEXT

(• THE ALLOMED VALUES ARE SEPARATED BY COMMAS. •).

ATTRIBUTEl RESOLUTION
(• DESCRIBES THE REQUIRED MAXIMUM VALUf OF THE LEAST

SIGNIFICANT BIT FAR THE DATA IN UNT0 DESCRIBED IN
THE UNITS ATTRIBUTE, *),

APPLICABLE TOl DATA.
VALUEl NUMERIC.

ATTRIBUTEl TEST
(• PROCEDURAL CODE WHICH DEFINES T^E Ct.HPUTATIONS

NECESSARY TO TEST THE SATISFACTION nf A
PERFORMANCE_REOUIREMENT USING DATA INMUT TB
VALIDATI8N>0INTS, •),

APPLICABLE TOl PERFORM*NCE_REQUIPEMENT,
VALUEl TEXT,

t
A-9

■ ^■i■•^■■^\."■■'K:'■-»■.^■^^i.,^■J^.^■v«^äfo~1^.,;■v.^v,. ^■■■;;^:%.->.-,V:^r...^.:.:.:.-,<,^.^;^.; .■:.;■..;■._. _, . ■..,-.j^: ,■■,:..-,■...■ :L-
- ■ ■■ . . . ■ . .

ATTI»IBUT£l TYPE
{* THE TYPE F8R THE 0*T* ITEHS WHICH Wt «EFEBCNCID

ON f>fTS OR ARE USED IN BETA 8H CAMHA
S1HUL*TI9NS, •),

APPLICABLE TOl DATA.
VALUE» REAL,
VALUEl INTEGER,
VALUEl BBSLEAN,
VALUEt ENUMERATION

(• THE ALLIED VALUES MUST BE 8PECIFIIC' IN THt
RANGE ATTRIBUTE. •),

O

ATTRlBUTCl UNITS

APPLICABLE TOl
VALUEl NAMED»

(ft THE CHNriGURATIBN MANAGEMENT MANAGES MUST CREATE
THE ATTRIBUTE VALUES THAT MAY 'BE EMPLflYEO IN
OfSCRlRING THE REOUIREHENTS FftR THE DATA
PROCESSING SYSTEM UNDER CONSIDERATKiN, ft)«

DATA, VALIOATION_PATH,

ATTRIBUTEI USE

APPLICABLE TPI
VALUE! BETA,
VALUEl GAMHA,
VALUEl BOTH

(• THE APPLICABILITY OF TYPE AND RANGE ARE
SPECIFIED IN THE USE. •),

DATA,

(ft BOTH BETA AND GAMMA ft).

OATAl CLOCKJTIME
(ft A PREDEFINED DATA ITEM MHICH INCREMENTS AT THE

SAME PATE AS ENGAGEMENT TIME, EXCEPT FOR ITS
INITIAL VALUE WHICH IS ARBITRARY, CIOCK.TIME MAY
BE REGARDED AS CN6A8CHENT TI^E, IT HAS N8 CLOCK
ERROR, •),

LOCALITYl GLOBAL,
TYPEI REAL,
UN.ITSI SECONDS,
USEl BOTH,

OATAl FOUND
(ft A PREDEFINED DATA ITEM WHICH IS SET Tfi EITHER

TRUE OR FALSE AFTER EACH SELECT IN A BETA OR
GAMMA, FOUND IS SET TO TRUE IF AN INSTANCE
SATISFYING THE SELECTION CRITERION TS LOCATED,
OTHERWISE, FOUND IS ASSIGNED THE VAIUC FALSE, ft),

LOCALITY! GLOBAL.
TYPE! BOOLEAN,
USEl BOTH,

A-10

.^^^^■■■-yr^-^.-:^-.;Wn; -'.r::'-----':---::'¥'r.^-r.-^-*.<.^^^ ■-:■■■■■;*■:-. •,^y!^^^-^M----^-^'^^'^-^ ":■'"'-'■■ '-^

SYMBOL DEFINITION

? R_NET INITIATION

Y SUBNET INITIATION

INPUTJNTERFACE

<) ♦ OR

OUTPUTJNTERFACE

ALPHA REFERENCE

c) SUBNET REFERENCE

e OR-NODE

© AND-NODE

© EVENT-NODE

© FOR EACH-NODE

© VALIDATION_POINT-N

A SUBNET TERMINATION

A R_NET TERMINATION

Figure A-1 RSL Symbols

A-ll

r

APPENDIX B

DRAFT REPRESENTATION OF THE KERNEL OF TLS

O

-■■•■■■ i ■«.,,.

"— Oi in «fci mm n ii mummim>ml**ll**^

»

IftAau

rwrriPfT^
TtAckr

I AuocAtr

DATA,

ScHCDMlf

5U^M^EI2^

A A

t
B-3

'V

A

pTVClwj5^
(Pvt^ «h^DUtg)

filhirrO

INITIALIZE SKED R

IMAGEJN_TRACK <«*«»LAST_PULSE

 1 + i/TlLfiiClCmfcPi'rg<TPOf

PICK CANDIDATES

FORMJRAME

(subnet)

© CANDIDATE

XRB(

o

3

«MM

i»«*^^*^

OT-«-W ■ Bv»«.,)")» j .f , -j > ■ ■■.'.[■■•^■-■■f.- /i:

V FORM FRAflE

com AND

DROP FLAG » TRUE /_ _\

MAKE COI'.MAfID

C RETURN 7^1
J

•

1-5

■IIIIIII.UI mH, ■■■II.I.I..I...... .I.m —-—-.—^•^r- '>.i- ' ' . " ■ "TT:: '..".jwiii).11 aiwii

^ XMITJ (Cvt^XllB)

£
TOMJX)

scHeome

L

f
B-6

«. ^--^.^rr—■

■ ■

t

ötMFKwur

^ RADAR, summA^y

I
e
f) PUtSff ®

Y IL0»OUV:

A

1
z
l

CL6c<

X

B-7

^
naHMHIMMMHMW

OTKMISC

^^

nxiK

^

 B^gftii, —

IK TUCK

^S d> £Xi

-©
■rrm nxr

IF (HOST

•nuuiu

2« _

i !S«1ST_IW«

"Tretranr

oniwiia if.
IM ILiVATlUi

•neansi/

Ä

r.euiKOMrr.

UBU!J»XTJKAH

11W1KMI

lkiH,r**rf

t

B-8

, «...

»«I*». ■.*-«-«,.,-- ^^..W- ■,,,-,,-,- .■,-,.1.™-,.v,^to.»,,.-W '

•

)

ll^&uT
T

tftt>A\t.T[»pr
TRAMsiHir^srAR.r

4. ,- t^^Sf^l"

TI-.TI> ££S2^2]

l ^APA^.c(.ocfe:.I»J 3)

^/V^2 - CtocK-T IM^"

fi^CCocV^/Vtg^^g

rS-TKAK/i^fT

B
i

i

€
B~9

■I ■■—— ■ ii' i .. ^^ ■..!^1

c*'Wn/to/D-XD

1 Hö.ro

i —

r-
Ho- xi>

J

o

)

B-10

gifc.1. 'mw ! iT-r-y " — ■'!'

tm&smsi** .■■■■■■ ...= ,.

•

gü4oJ Flies

. ST*RT,Tt/*ie (Orders

t
8-n

HMMMM
■£=» '-* ■' — -W" '• ■ "^ » » ■— -...-. ...f.. n »■ - w^i „— UM II.«^

■ ■■- ■:

^•^«».l T^co^

s^^l^r- ^^

i

0

B-12

7V^ .-■:.: ■iWi.V- Lii:^-:^,^!-^^^.^: ■ -y-.^,- ■. ---v-:; '/^r^S.--"'-'^^

'Ik' 9

•gK)T ITS-CLASS iFULSg

JtMir^sr/HHT

I-
STOP

ftCC6ut*)r?D
Rf ciriVf «tre P

Flu": TS^u/^^ou/

€

TRftCfc^RrtrC

I
FlWt ^PTCM/^ATO^

|mo\!>pgt).-xMA»F /

I
B-13

^^^ I -^-

 '.'i ■i!.|i' »"■ »I ■■

—™-—„.—^— «II11 .—-__
wmmmmmmmim

\

c
APPENDIX C

TLS KERNEL

C

C-l

--mm.: SWCEOINQr PjflHI

c

R.NET : CC.PESPONSE.
STRUCTURE:

INPUT.INTERFACE . CC_IN
ALPHA : VALIOATE.HEAOER
00

ALPHA ! ACKNOWLEDGE
0UTPUT_1NTERFACE : CC_OUT

AND
CONSIDER DATA : COMMAND„IO
00

(HAN00VER_IMAGE)
ALPHA : TRACK..1NITIATE
EVENT : ALLOCATE
OUTPUT INTERFACE : OATA_RECORD

OR
(DROP_TRACK)

ALPHA : TERM_TRACK
OUTPUT_INTERFACE : OATA.RECORO

OR
(INITIATE_ENGAGEMENT_HOOE)

ALPHA : STARTER
ALPHA : ENGAGEMENT.INITIATION
EVENT : SCHEDULE
EVENT : SUMMARIZE
TERMINATE

OR
(TERMINATE_EN6AGEMENT.M0DE)

ALPHA : TERM.ENGAGEMENT
TERMINATE

OTHERWISE
ALPHA : rc_EH«OK_PROCESSI»JG
TERMINATE

END
END

'£N0 .

fit.

R_NET : CONTROL.RESOURCES.
STRUCTURE:

ALPHA : ALL0CATE.AND_CONTROL_RES0URCES
TERMINATE

END .

R NET : RADAR.SUMMARY,
STRUCTURE:

CONSIDER DATA : MODE
00

(EM6&GE0)
FOR EACH ENTITY_TYPE : RETURNEO.PULSE
00 ALPHA : SUMHARIZE^USAGE END
ALPHA ! COMPLETE_SUMMARY
EVENT : SUMMARIZE
OUTPUT„INTERFACE : OATA_RECORO

OTHERWISE
TERMINATE

END
END .

t

'" y''^'-: ■ '-.■'^'^■^■■f:- .«■Vi.^J: -^.V-..- . ^,.^.,:,,-y.:,^k„r,^!. ^ '

R NET : RADAR.TIMING.
STRUCTURE:

INPUT INTERFACE : RADAR„CLOCK_LH
ALPHA": UPOATE„RADAR_CLOCK
TERMINATE

END .

C-4

!
'*—■'^T' > ^^■l^' '"' " "' 'MWI1" 'I!'» - ^.^^-^ "r- m ■**»'— -

■ ■. ■ : ^■^.v:.^^-:>v--^.^. ■,.-,^ :.:.■■-.:,■ _■:■-';■,- ■

•

t

m

R_NET T RESPONSE.TO.RADAR.
STRUCTURE:

INPUT.INTERF-ACE ; RAOAR_!N
ALPHA : ACCEPT_ANO_CMECK_RADAR_SETUPN_MESSAGE
CONSIOER DATA : RETURN.IMAGE STATUS
00

(1N_TRACK)
CONSIDER DATA : RAOAR_TYPE
DO

(T3)
OTHERWISE

ALPHA : T1WT2_MEASUREMENT.EXTRACTI0N
ENO

. 00
(VALIO_RETURN)

ALPHA : UPOATE_STATE
00

OUTPUT.INTERFACE : DATA.RECORO
AND

ALPHA : REDUN.OETERMINATION
DO

(REOUNDANT.iyAGE)
ALPH.i : REOUN_TERMINATION
EVENT : ALLOCATE
OUTPUT.INTERFACE : DATA.RECORO

OTHERWISE
TERMINATE

END
AND

ALPHA : LOW.ELEVATION.OETERMINATION
Bft

(LOW_ELEVATION)
ALPHA : L0W_TERMINAT10N
EVENT : ALLOCATE
OUTPUT.INTEREACE : OATA_RECORO

OTHERWISE
TERMINATE

END
END

OTHERWISE
ALPHA : GHOST_DETERMINATI0N
00

(GHOST_IMAGE)
ALPHA : GH0ST_TERMINATI0N
EVENT : ALLOCATE
0UTPUT_INTERFACE : DATA.RECORO

OTHERWISE
TERMINATE

END
END

OR
(DROPPED)

TERMINATE
OTHERWISE

ALPHA : RR.ERROR PROCESSING
TERMINATE

END
END .

C-5

jämt^Zm

-'■-•'■ • • ■ ™ t

NET : SKEDJ*.
STRUCTURE:

CONSIDER DATA : MODE
DO

(ENGAGED)
ALPHA : INITIALIZE.SKFD.R
FOR EACH ENTITY_rYPE : IMAG£.IN_TRACK
(LAST_PULSE*(1.0/TRACK_RATE)<TEOF)
DO ALPHA : PICK..CANOIDATES END
FO« EACH FILE : CANDIDATE
DO SUBNET : FORH..FRAME END
EVENT : XR8
TERMINATE

OTHERWISE
TERMINATE

ENO
END .

SUCH TH*T

R_NET : XMIT_R.
STRUCTURE:

ALPHA : PICK.COMMANO
DO

(FOUND)
EVENT : XRB
CONSIDER DATA : RAOAR.TYPE
DO

(T3)
ALPHA : FORMjra

OTHERWISE
ALPHA : F0RM_ri_T2

ENO
OUTPUT.INTERFACE : RADAR.OUT

OTHERWISE

^1

ENO
ENO •

EVENT : SCHEDULE
TERMINATE

C-6

^<i^m*'*"'i»i&>m9mmm'-'.'*:*™' . ***-<

»■SIRUw tm»mmmimmaMm

« SUHNtT : FORM.t-KAMF..
STKUCTJHt:

ALPHA : h lNU..COMt-LlCJ

Uli

AL^HA : "1AM: _CUI>^IAIMU

KfTUHM

41

C-7

-y" ^ „,,-«

ENTITY.CLASS : IMAGE
ASSOCIATES

DATA : ENTRV^TIME
DATA : IMAGE^IO

COMPOSED

ESTITY.TYPE : DROPPEO.IMAGE
ASSOCIATES

FILE : TERMINATOR
CONTAINS

DATA : OROP_REASON
DATA : r>ROP_TIME

ENTITY_TYPE : IMAGE^IN.TRACK
ASSOCIATES

DATA
DATA
DATA
DATA
DATA

COVARIANCE
LAST^PULSE
STATE
TRACK.RATE
WAVEFORM

PULSE

PULSE.TYPE
TARGET 10
XMIT^START

ENTITY.CLASS
ASSOCIATES

DATA : PULSE.ID
DATA
DATA
DATA

COMPOSED
ENTITY.TYPE : LOST.PULSE

ASSOCIATES
DATA : ACCOUNTED_FOR

ENTITYwTYPE : RETURNEO.PULSE
AUSOC!ATP$

DATA 7 ACCOUNTED.FOR
ENTITY^TYPE : T1.T2_PULSE

ASSOCIATES
DATA : RECEIVE_STOP
DATA : T1.T2_XMIT

ASSOCIATES
FILE : •Tl.tZ.WINOOW

CONTAINS
DATA : T1.T2.WIND0W.0ATA

ENTITY^TYPE : T3.PULSE
ASSOCIATES

DATA : RECEIVE.STOP
DATA : T3..XMIT

ASSOCIATES
FILE : T3.WIND0W

CONTAINS
DATA : Ta^INDOW.DATA

Q

- .

•

C-8

—■-■>■-—.^ .—■.--—********

■
■.^-.^^^.^^^^^

•

COMMAND^IO
HO.ID
INITIAL..COVARIANCE
INITIAL.STATE

MODE.CHANGE

INPUT.INTERFACE : CC.IN
PASSES

MESSAGE : HANDOVER
MADE

DATA
DATA
DATA
DATA

MESSAGE :
MADE

DATA : COMMANO.IO
MESSAGE : TERMINATION

MADE
DATA : COMMANO_IO
DATA t HO.ID

iNPUT.INTERFACE : RADAR.CLOCK.IN
PASSES

MESSAGE : R.CLOCK_MESSAGE
MADE

DATA : RADAR.CLOCK_TIME

;'

,

€
C-9

'mmmmm

mmm

INPUT_INTERFACE : RAOAR^IN
PASSES

MESSAGE : Tl^TZ.RETURN
MADE

DATA : RAOÄR..TYPE
DATA : RR_ORDER_ID
DATA : T1_T2.RECEIVE

INCLUDES
DATA : ALPHA..ERROR
DATA : BETA.ERROR
DATA : T1T2RTN..ERROR..REPORT

INCLUDES
DATA : REASON.FOR.TRANSMISSION FAIUM»

DATA : WAKE_ARRAY
INCLUDES

DATA ! AVERAGE_SIGNAL_POWER
DATA : THRESHOLD_DOl«IN_CROSSlNG Tl-F
DATA : THRESHOLO^UP.CROSSING.TIME

MADE
FILE : Tl.TZ^DATA

CONTAINS
DATA : T1_T2_REC0R0

INCLUDES
DATA : NOISE.LEVEL
DATA : RANGE.MARK.INFORMATION

INCLUDES
DATA
DATA

T3,RETURN

RANGE.MARK.TIME
SIG^AL.AMPLITUDE

MESSAGE
MADE

DATA : RAnAR_TYPE
DATA : RR_ORDER_IO
DATA : T3.RECEIVE

INCLUDES
DATA : ALPHA_ERROR
DATA I BETA^ERROR
DATA ; T3RTN..ERR0R..REP0RT

INCLUDES
DATA : REASON.FOR.TRANSMISSION.FAILURE

DATA : WAKE.ARRAY
INCLUDES

DATA : AVERAGE_SI6NAL.P0WER
DATA : THRESHOLOJ)OWN_CROSSING_TlME
DATA : THRESH0L0.UP.CR0SSIN6.TIME

MADE
FILE : T3.DATA

CONTAINS
DATA : T3.RECORO

INCLUDES
DATA : NOISE.LEVEL
DATA : RANGE.MARK_INFORMATION

INCLUDES
DATA : RANGE.MARK.TIME
DATA : SI6NAL..AMPLITUDE '

C-10

,.■.■•■'.•■(•■

■ . n^^.V^w^v-^^^

t OUTPUT_lNTERFACe ; CC.OUT
PASSES

MESSAGE : ACKNOWLEDGEMENT
M40E

DATA : COMMAND^IO

OUTPUT.INTERFACE : OATA.RECORD
PASSES

MESSAGE : RADARJJSAGE
MADE

DATA : OATA_RECORO_TYPE
DATA : ENGAGEMENT_TIME
DATA : RESOURCES

MESSAGE : STATEJJPDATE
MADE

DATA : CURRENT_STATE
DATA : DATA_RECORD.TYP£
DATA : HO.ID

MESSAGE : TRACK.INITIATION
MADE

DATA
DATA
DATA
DATA

MESSAGE :
MADE

DATA
DATA
DATA
DATA

: DATA_RECORD_TYPE
: HO_ID
: INITIAL.STATE
: TIME_OF_INITIATION

TRACK_TERMIMATI0N

: DATA.RECORDJTYPE
HO.ID
REASON.FOR.DROP
TIME.OF.DROP

C-ll

..—■..ull—II "«»mm »!■■. i i Ti» .■■.■, "• " '"■•■■*" — f" »w-W"

r ' ■■::■-■ ,-...;..-.-. >!.;- ,,,„,„,:,. .,., ,« -., .^..m ,tl, ,-. ,.- „;;S^.„1,.W,-.,.........„^.;. .-.*.,,. . ^■.-.: . • ■ ,,.— UMlMUB«
. vlmvmtf, .'^- f ^ «

OUTPUT.INTERFACE : RAOAR.OUT
PASSES

MESSAGE : T1_T2_C0MMAND
MADE

DATA
DATA
DATA
DATA

RADAR..TYPE
RR_ORDER.ID
TRANSMIT_START
Tl>T2_TnANSMIT

INCLUDES
DATA : ALPHA_PHASE_TAPER
DATA : 0ETA_PHA5E_TAPER
DATA : RECEIVE_lNFORMATION

INCLUDES
LFNGTH OF.RECEIVE
RECF1VE.5TART.TIME

RFCEIVER-G*!^-^111"6

DATA
DATA
DATA

MADE
FILE : Tl_T2>6ATE

CONTAINS
DATA : T1_T2_GATEJ5ATA

INCLUDES
DATA
DATA
DATA
DATA
DATA
DATA

MESSAGE : T3_COMMAND
MADE

DATA : RADAR_TYPE
DATA : RR_ORDER.IO
DATA : TRANSMIT.START
DATA : T3_TRANSMIT

INCLUDES
DATA *. ALPHA_PHASE_TAPER
DATA : BETA.PHASE.TAPER
DATA : RECEIVE.INFORMATIOM

INCLUDES
DATA
DATA
DATA

MADE
FILE : T3_GATE

CONTAINS
DATA : T3J5ATEJ)ATA

INCLUDES
DATA
DATA
DATA
DATA
DATA
DATA

ACCEPTANCEJTHRESHOLO
GATE.LENGTH

RAN6E
S
MARK'GENERATION.TECHNIQUE

SIGNAL_PR0CESSING.MODE
THRESHOLD.TYPE 1

LENGTH.OF.RECEIVE
RFCEIVE.START.TIME
RFCEIVER.GAIN.SETTIN6

ACCEPTANCE_THRESHOLO
GATE.L£NGTH
GATE.START.TIME
RANGE MARK.TECHNIQUE
STGNAL.PROCESSING.MODE
THRESHOLD.TYPE

C-12

«.IMHHIWP''-min .in ii mi JI iiiii'iiWiMüpiiX*

mmmwm0'»s»^9miMmmmvim^»»:.--it^jr7Wii>" •■•/,-mx --i«.»,";;>:B»;iT,'';«-!"">>'^sj,- ■••mr'f'!-''~:im:r-'~':''~'"''':

FILE : CANDIDATE
CONTAINS

DATA : CANDIDATE„ENERGY
DATA : CANDIOATE.IMAGE.ID
DATA : CANDIDATE_WAVEFORM
DATA : PRIORITY

E : COMMAND
CONTAINS

DATA : COMMAND_ENERGY
DATA : C0MMAND_IMA6E_ID
DATA : COMMAND_WAVEFORM
DATA ! START^TIME
DATA : WINDOW

FILE : WAVEFORM_rABLE
CONTAINS

DATA : WF.CHARACTERISTICS
DATA : WF_NAME

€

i

t
C-13

tm—
rnqp '^^HflMMMH^BBSHfltB^^^nHI^^^^^^E^^M

■ ■■

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

CLOCK.TIME
DELTAT
DR0P_FLA6
ELEVATION_LIMIT
ENEPGY.BOUND
FOUND
FRAME.RATE
GHOST.IMAGE
1ST
LAST.ALLOCATE
LOW_ELEVATION
MODE
RAOAR_CLO":
RAOAR.MEASUREMENT
RAOAR_MODEL_OATA
REOUNDANT.IMAGE
RETMRN.IMAGE^STATUS
RR_OROFR_IOC
SUMMARYWRATE
TEOF
VALID^RETURN

C-14

::,«,;,:„,,,«!,:•«:.,;, .•>m1,.i,,;Ä,.(,,,,„„,„,,,,,,,,,, .«„.„.„-.„^..„„.„^---^.„„^.^..^^^nrn ,»

t

c
APPENDIX D

TLS REQUIREMENTS NETWORKS

D-l

. •,'■ ■» ..r.^ -w-

§

t

I

RflOflR_TIMI
NG

RRÜRR
/J:LOCK_JN

1
UPDflTE_RflO
flR_CLPCK

fRBCfiDlNO PiOg

D-3

I

[

««fMM«MMM| 1—mtMrn ..>IWP-M..M.W,I,J^.

()

0

^

D

-r—

-
'^'»»»«•«"««WWWW^^ .4,..»..,:-«;,^..;,,...,./:,-;« /■j--::^,, .-:,.i*-'-->■ rf: '

*!

BRANCH
NO.

1
2
3
4
5

0R01NRL
VPLUE

CC_RESPONSE
8RP.NCH LEGEND

CONDITIONRL EXPRESSION

(HPN00VER_innGE)
(DRCP_TRRCK)
(INITIRTE_ENGCiCEMENT_MOOE)
(TERMINRTE_ENGRGEMENT_riOOE)
OTHERWISE

0-5

"■™ i »Mi ■

"1)

~

o
D-6

:.-:..

SKüBIWIS^fl^SStf ^«^as*.^«*:1-»^-?-.'^'"»-':-'-';^'-'»'.^ «SV-K-W.,'>-;.■ ■*:■

Biis

1 RESPONSL fO RBORR
BRfiNCH LEGENO

BRANCH OROINRL
NO. VALUE C0NC1TI0NRL EXPRESSION

1 ! IN TRRCK)
2 (DROPPED)
3 OTHERWISE
4 (T3)
5 OTHERWISE
6 (VALID RETURN)
7 0THERW1SL
8 (REDUNDRNT IMRQE)
9 OTHERWISE
10 (LOW_ELEVRTION)
11 OTHERWISE

t

12
13

tCHOST_IMRGE)
OTHERWISE

D-7

■^.»T-.^,;,»i JJIII,-»»^ -?---»tn>l».1!,.»». l.Hl.i,I ■nil i<iiiiy»nyii.i i»!»...:. _ ■..■■■■. -- -s_.*'

SKEO_R

nooE

INlTlfiLlit
_snro_R

jnBGE_IN_T
ROCK

I PICK_CSN01
I DAUb

F
CBNOIORTE

FORfl..

E
XRB

':

1

D-8

.■-..■■f.>.m.-ti»,atmM ...I'.^-n. _ ^ ■ f _

.i , , ,

D-9

i
SKEO_R

BRANCH LEGEND
B^fiNCH OROINRL

NO. .VALUE CONOITIONflL EXPRESSION

(ENGAGED)
OTHERWISE
(LRST_PULSEt(1 .0/TRRC(LRHTE)<rEOF

■•*"■•-■

^mmmmmm-mmir^^mmnmm^^. ._ ■ ..^-

dJIMMh

««■'W

t

D-10

:
H S^B8aWBaS»Baft3«^SB5i^Jfflftl|«sfJS»WPSpm^ ^ s ' ' ■■;:.^'-^^7:'^--^--rVi-;- ■ • ^ W ^"J ■':S:'; vi

s

• FORM_/RfiME
BRfiNCH LEGENC

B^RNCH 0R01NRL
NO. VRLUE CONCITIONPL EXPRESSION

(NOT OROP_FLRG)
OTHERWISE

D-ll

-"■mtmm

■.«»■;i<«»--—^-»-«imBli'^l,».«'

• • I ■ , . .

xrmj

S MEOULE

f

o
i 'Cf'_T:_'f

D-12

-> ■ ^_^B__^__aBaaaaHaaM^Ba^aMB^Maa^_MMMaKav,MVka^BBaii

t
8RRNCH QROINRL

NO. VALUE

XMITJ?
SRRNCH LECENO

CONOITIONaL EXPRESSION

(FOUND)
OTHERWISE
(T3)
OfMERWISE

c

D-13

RflOflR_suriti
flRY

RETURNEO_P
ULSE

conPLrTi_s
unnflRf

SUMMRRIZE

o

o
D-14

u~~
•—"!■■—'■"'■"' ■«•^-^•^T^ L

■

t
RROPR_SUfW«RY
BRANCH LEGEND ,i

BRANCH
NO.

OROJNSL
VALUE CONDITIONAL EXPRESSION

._ 'I

1
2

•

(ENGAGED)
OTHERWISE

•

i'

!i

l!

i

.i

:l

1 •;
!i

ii

ij

11
l

■t

jl
1

•■

I
,1

>i

il
I

;i
!i
.1

;j

D-15

'*SyA

■

o

1

tnffB VtmtiiwnMitMi'itn' i iiii

•

C
APPENDIX E

COMPLETE TLS DATA BASE

t

^^2^^MI

ALPHA : ACCEPT.ANO_CHECK_RADAR.RETURN_MESSAGE.
BE TA!
"VAR XtREAL»
BEGIN SELECT FIRST FROM PULSE SUCH THAT

(PULSE_IOsRP..OROER-IO) J
IF NOT FOUND THEN RFTURN.IMAGE STATUStsNO ORDER

ELSE IF «RADAR.TYPEoPULSE TYPE) THEN '
RETURN_IMAGE_STATUSi=*RONG ORDER

ELSE BEGIN SET RETURNEO.PULSEl
ACC0UNTE0_F0R:=NEITHERJ
SELECT FIRST FROM IMAGE.IN.TRACK
SUCH THAT (IMA6E_ID = TARGET,.IDM

IF NOT FOUND THEN RtTURN_lMAGE„STATUSSsOROPPED
ELSE BEGIN RETURN_IMAGE_STATUS:«IN.TRACKr

X:=RFCEIVE.ST0P|
FOR EACH PULSE SUCH THAT
(RECEIVE_ST0P<K AND (PULSE TYPEaTl OR
PULSE.TYPEsT? OR PULSE.TYPEsT3)» DO
SET LOSTJ>ULSE?
ACCOUNTED.FORraNEITHERI
ENDFOREACH

END

C
ENDI",

INPUTS:
DATA
DATA
DATA
OAT«

END

IMA6E.I0
PULSE.IO
PULSE.TYPE
PADAR.TYPE

DATA: PECEIVE.STOP
DATA: PR.OROER.IO
DATA? TAHGET.Iö.

OUTPUTS:
DATA: RETURN_IMAGE_STATUS.

SETS:
ENTITY.TYPE: LOST PULSF
FNTITY_TYPE: RETURNED PULSE,

EQUATED TO:
SYNONYM:.CKRAOMES.

REFERRED BYi
R.NET : RESPONSE.TO.RAOAR.

e

ALPHA r ACKNOWLEDGE.
BETA:

"BEGIN

FOHM ACKNOWLEDGEMENT
END»".

FORMS:

MESSAGE: ACKNOWLEDGEMENT,
REFERRED BY:

R.NET : CC.RESPONSE.
DECISION: TRACK.PERFORMANCE.ALLOCATION
ORIßlNATING.REOUlREMENT: DPSPR.3.?_?.8„PERF0RMANCE
ORIGINATING.RFQUIRFMENT : DPSPR.3_?^_0_FUNCriONAL
ORIGINATING.REOUIREMENT: DPSPR_3-2.4.B FUNCTIONAL» REFERRED BY:
R.NET : CONTROL.RESOURCES.

ALPMA : CC.ERROR.PROCESSING.
BETA:
"BEGIN
ENOI".

REFERRED BV:

R.NET : CC.RESPONSE.

t

O
E-4

lK«iA !MI»I 'min n» mimi ii i

v.r.'^.-^-.W ■;-'Wfiii,::::..J:: . -..,■:■ .^ : .-,.,,;.*;,.. ■ V,,, „ •;■■•, ■. ,• . -, I

f

f

ALPHA : ALLOCATE.ANO.CONTROL.RESOURCES.
BETA:
"VAR EtP»«R»DELTA.TIME:REALIJ:iNTEöERI

BEGIN
E:«0.0l
POR EACH RETURNED PULSE DO

IF ACCOUNTED FOR=SUMMED THEN
BEGIN

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT
(*F_NAME=PULS£_TVPe)I

IF FOUND THEN E.'sE^F.CHARACTERISTICSl
DESTROY PULSEI

END
ELSE IF ACCOUNTED.FORa NEITHER THEN

BEGIN
SELECT FIRST FROM WAVEFORM.7ABLE SUCH THAT

(WF_NAME=PULSE_TYPE)I
IF FOUND THEN E.'sE-^F.CHARACTERISTlCSl
ACCJUNTED.FOR:«COUNTEDI

END I
ENDFOREACHI
FOR EACH LOST.PULSE DO

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT
(WF^NAMEsPULSE.TYPE) I

IF FOUND THEN E:=E»WF.CHARACTERISTlCSf
DESTROY PULSEI

ENDFOREACHI
DELTA_TTME:=CLOCK.TIME-LAST.ALLOCATEI
LAST.ALLOCATE!=CLOCK_TIMEI
ir c-»ü»u tnc.it
BEGIN
PWR:=E/DELTAWTIMEI
JtmQt
FOR EACH IMAGE.IN.TRACK DO J.'sJ*! lENOFOREACHl
FOR EACH IMAGE.IN.TRACK DO

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT
(WF_NAME=WAVEFORM)I

IF FOUND THEN TRACK.RATE.'s (PWR/J)/WF.CHARACTERISTICSI
ENDFOREACHI
END

ENDI".
OESTROYSt

ENTITY.CLASS: PULSE.
INPUTS:

ACCOUNTEDlFOR
CLOCK.TIME
IMAGE.IO
LAST.ALLOCATE .
PULSE.TYPE
WAVEFORM
WAVEFORM.TABLE.

DATA:
DATA:
DATA:
DATA:
DATA:
DATA:
FILE:

OUTPUTS:
DATA:
DATA:
DATA:

ACCOUNTEO.FOR
LAST.ALLOCATE
TRACK.RATE.

TRACED PROM:

E-5

 mm^mmmmmim*'

ALPHA : COMPLETE^SUHMARY.
BETA: m
"BEGIN FORM RAOAR_USAGEI

DATA_RECORD_TYPE:=RADAR_USAGE-REPORTI
ENöAGEMENT_TIME:=CLOCK«TIME

END»".
FORMSi

MESSAGE: RAOAR^USAGE.
INPUTS:

DATA: CLOCK.TIME.
OUTPUTS:

DATA: DATAJ*FCORO_TYPE
DATA: ENGAGEMENT^TIME,

REFERRED BY:
R.NET : RADAR.SUMMARY,

ALPHA : ENGAGEMENT.INITIATION.
BETA:
"CONST X=ENGA6E0I
BEGIN MOOE:aX
ENDI",

OUTPUTSl
DATA: MODE.

REFERRED BY:
R.NET : CC_RESPONSE.

ALPHA : FIND_CONFLICT. "t
BETA« ^

"BEGIN
OKÜP.FLAG:=FALSEt
FOR EACH COMMAND DO

IF START_riME>TEOF THEN BEGIN
DPOP_FLAG:=TRUEI
DESTROY CANDIDATE ENDI

ENDFOREACHI
ENDI",

DESCRIPTION«
«COMPARES TRANSMIT RECEIVE WINDOW OF THE CANDIDATE WITH
THOSE OF THE THEN.CURRENT COMMAND.FOR CONFLICT, IF
A CONFLICT IS FOUND DROP.FLAG IS SET TRUE,",

INPUTS«
DATA: START.TIME
DATA« TEOF,

OUTPUTS«
DATA: DROP.FLAG,

TRACED FROM:
DECISION: TRACK.PERFORMANCE.ALLOCATION
ORIGINATING.REOUIREMENT« DPSPR_3_?.J?.B.PERFORMANCC
DRISINATING.REQUIHEMENT« 0PSPR.3-2.3_E.FUNCTI0NAL.

REFERRED BY«
SUBNET J FORM FRAME,

o
E-6

^'^iiiViiiiiiiiiii ■iiiiiirTii i iT-iiiif- tj -^ j in || i i __ ^r.^^. ^-^^^^^—^„^^^^„■^^^^ m)

mmmssmimi
■ ■ ■ ■ ■ ■■■■ .'■■:■■ ■ . fV:»'!^:, •' •: S

•

i.

«LPHA : F0RM_T1.,T2,
BETA:
"BEGIN

FORM n_T2_C0MMAN0l
T1_T2_TRANSM1T:=0.0I
CREATE TI_T2_GATei
Tl_T2_GATE_OATA:=0.OI
SET T1_T2_PULSEI

RECEIVE.STOP:=START TIMEI
T1_T2_XMIT:=0.0I
CPEATE Tl_T2_WlND0Wf
Ti.T2_WIN0OW_0ATA:«0.0l

ENDI".
FORMS:

MESSAGE: Tl,T2_COMMANO.
INPUTS:

FILE: COMMAND,
OUTPUTS:

DATA: PECEIVE^STOP
DATA: Tl_T2_TRANSMIT
DATA: T1_T2_X^IT
FILE: T1.T2-GATE
FILE: Tl_T2_WINDOW,

SETS:

ENTITY.TYPE: T1_T2.PULSE4
TRACED FROM:

ORIGINATING.REOUIREMENT: DPSPR-3_2_2.C_FUNCTIONAL •
ORIGINATING.REQUIREMENT: DPSP^_3_2,3.E_FUNCTIONAL.

REFERRED 8Y:
R.NET : XMIT^R.

ALPHA : FORMATS.
BETA:
"BEGIN
FORM T3_COMMANDI
T3_TRANSMIT:=0.0I
CREATE T3_GATEI
T3_GATE_DATA:=0.0I
SET T3_PULSE|
T3_XMlT:sO.0l
RECEIVE_STOP:»START_TIMEI
CREATE TS.WINOOrfl
T3_WINDOW^DATA:»O.OI
ENDI".

FORMS:
MESSAGE: T3..C0MMAN0.

INPUTS:
FILE! COMMAND,

OUTPUTS:
DATA: RECEIVE.STOP
DATA: T3.TRANSMIT
DATA: T3_XMIT
FILE! T3«GATE
FILE: T3_WIND0W,

SETS!
ENTITY.TYPE! T3.PULSE.

TRACED FROM!

ORIGINATING.REQUIREMENT! DPSPR_3_?_2.C_FUNCTI0NAL
ORIGINATING.REQUIREMENT! OPSPR„3.?.1_E.FUNCTIONAL.

REFERRED BY!
R.NET I XMIT.R.

E-7

^ßt^limmmmmmmmmmäm^mm
'"■ " ll,»11 ■ '■ 'mr' — 1. J

ALPHA : GMOST.OETERMINATION,
BETA:

"BEGIN 6H0ST_IMAGE:= (RADAP„MEASUREMENT>«10.0> ENDI",
INPUTS:

OATA: RADAR.MEASUREMENT.
OUTPUTS:

DATA: GHOST.IMAGE,
TRACED FROM:

DECISION: TRäCK_PERFORMANCE_ALLOCATION
ORIGINATING.REOUIREMENT: DPSPR_3.?-?.R_FUNCTI0NML
ORIGINATING.REQUIREMENT: 0PSPR„3..?-2-B»pERF0RMANCE
ORIGINATING.REQUIREMENT: DPSPR^.?_3.C_FUNCTI0NAL.

REFERRED BY:
R.NET : RESPONSE_TO_RADAR.

()

ALPHA : GHOST.TERMINATION,
BETA:
"BEGIN SET DR0PPED..IMA6EI

FORM TRACK.TERMINATIONI
CREATE TERMINATOR!

\ HO_ID:=IMAGE_IO;
\ REASON.FOR.OROP^^GHOSTI

DROP_REASON:=GHOSTI
TIME.OF.DROP.'sCLOCK^TIMEl

OATA_RECORD.TYPE:=TRÄCK.TERMINATlON_REPORT|
OROP.TIME:=CLOCK_TIME

ENOI».
FORMS:

MESSAGE: TRACK.TERMINATION.
!N*UT5»

CLOCK.TIME
IMAGE.IO.

w

DATA:
DATA:

OUTPUTS:
DATA:
DATA:
DATA:
DATA:
FILE:

SETS:
ENTITY.TYPE: DROPPEO.IMAGE,

TRACED FROM:
ORIGINATING„REQUIREMENT: DPSPRJJ.?.?.B.FUNCTIONAL«

REFERRED BY:
R_NET : RESPONSE.TO.RAOAR.

DATA.RECORD.TYPE
HO.ID
REASON.FOR.OROP
TIME.OF.OROP
TERMINAfÜR.

■•

o
E-8

-IMM ■■in«««!'»!!.! mum

namtm

-■.:■■ ••mm»^i. %r-*-.^^*w.*s^5vs^*' r v

ALPHA J 1NITUL1ZE_SKE0_R.
BETA:
"BEGIM

TE0F:=CL0CK_T1ME»FRAMEJ»ATE» IST:=Ct.QCK.Tl»EI
ENDI".

DESCRIPTION:
"COMPUTES THE TIME OF THE E^tO OF THE CURRENT FRAME.".

INPUTS:
DATA: CLOCKjriME
DATA: FRAMEJUTE.

OUTPUTS»
DATA: 1ST
DATA: TEOF.

REFERRED BY:
R_NET : SKEO.R.

IS' 1

•

ALPHA : LOW_ELEVAT10N_OETERMINATION.
BETA:
"BEGIN LOi_ELEVAT10N: = (ENTRY.JfIME-CLOCKjriME>ELEWATIONJ.IHlTI
ENDI".

INPUTS*.
DATA: CURRENT.STATE
DATA: ELEVATION.LIMIT.

OUTPUTS:
DATA: LOW.ELEVATION,

TRACED FROM:
0RIGINATIN6JJEQUIREMENT: DPSPRJL^J'.D.FUNCTIONALI

REFERRED BY:
RJ4ET : RESPONSE.TO.RADAR.

ALPHA : LOH.TERMINATION,
BETA*.

"BEGIN SET DROPPED_IMAGEI
FORM TRArK.TF.RMINATIONI
CREATE TEHMiNATORI
HOjm: = IMAGE,IOI
REASON_FOR_OHOP:aLOMl
OROP_REASON:=LO«U
TIME_OF_OROP:=CLOCK_TIME«

OATA^RECOHD.TYPE:=TRACK_TE«MINATION.REPORTI
DROP JTIME:=CLOCK_TIME

ENDI".
FORMSt

MESSAGE! TRACK.TERMINATION.
INPUTS:

DATA: CLOCK.TIME
DATA: IMAGE.IO.

OUTPUTS:
DATA: DATA_RECORD_TYPE
DATA: HO_ID
DATA: REASQN_FOR_OROP
DATA: TIME.OF.DROP
FILE: TERMINATOR.

SETS:
ENTITY_TYPE: OROPPED.IMAQE.

TRACED FROM:
ORIGINATING.REQUIREMENT: 0PSPR„3_3«2.0_FUNCTI0NAL.

REFERRED BYJ
».NET » RESPONSE_TO_RAOAR.

E-9

ALPHA : MAKE.COMMAND,
BETA:
■BEGIN

CREATE COMMANOI
COMMANO.lMAGE_IO:=CANOIDATE_IMAGE_IOI
COMMANO_WAVEFORM:=CAND10ATE«WAVEFORMI
COMMAND_ENERGY:sCANOIOATE_ENERGy|
START.TIMErsISTl
IST:=IST*DELTATI
SELECT FIRST FROM IMA6E_IN.TRACK SUCH THAT
(IMAGE_in=CANDIDATE_IMAGE.IOII

LAST_PULSE:s:START_TIMEI
DESTROY CANDIDATE
ENDI".

INPUTS:
DATA:
DATA:
DATA:
DATA:
DATA:
DATA:

OUTPUTS:
DATA:
DATA:
DATA:
DATA:
DATA:
DATA:

REFERRED BY:
CMQUPT

CANDIDATE_ENER6Y
CANDIOATE„IMAGE_IO
CANDIDATE_WAVEFORH
DELTAT
IMAGE.IO
1ST.

C0MMAND_ENER6V
COMHAND_IMAGE.ID
COHMANO.WAVEFORM
1ST
LAST.PULSE
START-.TIMr.

FnOM^FRAME,

D

I fe)

E-10

.

ALPWA S PiaC_C*NOIOATCS,
eCTAS

' "BEGIN
D»CITi: CANDIOATEI
CÄM!JnÄlf_IMAGe_in: = IMAGE.lOl
If V<AVEFOSM=n THEN PRIORITYtal ,0

ELSE IF WAVEE0PN=T2 THEN PRIORITY:s2,0
ELSE PRI0RITY:=3.0J

CAWaiOATE.,.WAVEFORM:=»iAVEFORM|
SELECT FIRST FROM WAVEF0RM_JA8LE

SUCH THAT WF^NAMEstfAVEFORMI
IF NOT FOUND THEN CANOIOATE.ENERGY:sO.O

ELSE CANDIDATE_ENERGY:=WF_CHA*ACTERISTICSI
ENDS".

DESCRIPTION!
"EACH IMAGE_IN_TRACK WHICH MIGHT GENERATE A MESSAGE THIS
FRAME HAS ITS T iNSMIT AND DECEIVE START AND STOP TIMES
EXTRACTED« ITS ENERGY DEMAND DETERMINED AND ITS
PRIORITY ESTABLISHED.",

INPUTS:

IMAGE.IN.TRACK»»

f

DATA: IMAGE.ID
DATA: WAVEFORM

(»INSTANCES OF ENTITY.TYPE
FILE: WAVEF0RM.TA6LE.

OUTPUTS:
DATA: CANDIDATE. .ENERGY
DATA: CANDIDATE. .IMAGE.IO
DATA: CANDIDATE, .WAVEFORM
DATA: PRIORITY.

TUArcri F30" «:
DECISION: SYNCHRONOUS.VS_ASYNCHRONOUS

REFERRED BY:
R_NET : SKED.R,

E-n

.

ALPHA : PICK.COMMANO.
BETA:
"BEGIN

SELECT FIRST FROM COMMANOI
IF FOUND THEN
BEGIN

TRANSMIT.STARTZSSTAHT.TIHEI
R4DAP_TYPE:aC0MMAND_WAVEF0RM|
RR_OPDEH_IOC:sRR_ORDER-IDC*ll
CREATE PULSEI
PULSE.TYPE:sCOMMAND.WAVEFORNI
TARGET_ID:=COMMAND.IMAGE_IOI
PULSE.TotsRR.ORDER.IDCI
XMIT^START:=START_TIMEI
DESTROY COMMANDI

END
END;*

1
«

DESCRIPTION:

0

RR.O«DER.ID:«RR.OROER.IDCl

"PICK.COMMAND SELE
CREATES:

ENTITY.CLASS: PULSE,
INPUTS:

DATA: RR_ORDER_IOC
DATA: START.TIME
FILE: COMMAND.

OUTPUTS:
DATA: FOUND
DATA: PULSE.IO
DATA: PULSE.TYPE
DATA: RADAR^TYPE
DATA: PR.ORDER.ID
DATA: RR.ORDER.IOC
DATA: TARGET.IO
DATA: TRANSMIT.START
DATA: XMIT.START.

REFERRED BY:

NEXT COMMAND.

1

R.NET : XMITJ»,

I*«/

E-12

■mmwn -.i1 ■ii<r-'-''«P«—w—-»WJi»t^r*T■»*■■■

■. ■

ALPHA : RE0UNJ)ETERMINATI0N.
BETA:

"VAo XiINTEGERI
»EGIN x:soi

FOR EACH IMA6E.IN.TRACK 00
IF STATE=C(JRHENT_STATE THEN X:=X»ll
ENDFOREACHI

SELECT FIRST FROM IMA6E.IN_TRACK SUCH THAT
IMAGE.ID=TARGET_IOI

REDUN0ANT-IMAGE:*(X>1)
ENOI".
INPUTS:

DATA: CURRENT.STATE
DATA: STATE.

OUTPUTS:
DATA: PEDUNOANT^IMAGE.

TRACED FROM:
DECISION: TRACK_PERFORMANCE_ALLOCATION
ORIGINATING.REQUIREMENT: 0PSPR.3_?.?_A.FUNCTI0NAL
0RIGINATIN6_REQUIREMENT: DPSP«..1.?_?«B_PERF0RMANCE
ORIGINATING.PFQUIREMENT: 0PSPR.3_?.1_9_FUNCTI0NAL.

REFERRED BY:
R.NET : RESPONSE.TO.RAOAR.

II

ALPHA : REOUN
BETA:
"BEGIN

TERMINATION.

ENOI

SET OROPPEO_IMAGEl
FORM TPACK.TFRMINATIONI
CREATE TERMINATORI
HU.IO^IMAGE.IOI
PEA50N_F0R_0R0P:sREDUN0ANTI
D90P.REAS0N:= REDUNDANT»
TIME_0F_0R0P:=CL0CK_riMEI

DATA.RECORD.TYPE^TRACK.TERMINATION.REPORT»
OROP.TIME.'^CLOCK.TIME

^

FORMS:
MESSAGE: TRACK.TERMINATION.

INPUTS:
DATA:
DATA:

OUTPUTS:
DATA:
DATA:
DATA:
DATA:
FILE:

SETS :
ENTITY.TYPE: OROPPEO.IMAGE.

TRACED FROM:
ORIGINATING.REQUIREMENT: 0PSPRJ.2.2.A.FUNCTI0NAL«

REFERRED BY»
R.NET : RESPONSE.TO.RAOAR.

E-13

CLOCK.TIME
IMAGE.ID.

OATA.RECORO^TYPE
HO.IO
REASON.FOR.DROP
TIME.OF.DROP
TERMINATOR.

-V*^*^™.^ j^^-f '•*"•"

v«^:ft-»#*^-^ .w-mmmmmmmmmmmmmmmmmmmmmmmm

ALPHA : RR_ERR0R_PR0CESSIN6.
BETA: "BEGIN ENDI",
REFERRED BY:

R.NET : RESPONSE.TO^RAOAR.

ALPHA : STARTER.
ARTIFICIALITY: ARTIFICIAL,
BETA:
"BEGIN CREATE WAVEFORM..TABLEI

«F.NAME-.aTll
«F_CMARACTERISTICS:«l.OI
CREATE WAVEFORM.TABLEI
WP.NAME:=T2I
WF_CHARACTEflISTICS:=2.0l
CREATE WAVEF0RM_TA8LEI
WF_NAME:sT3»
WF_CHARACTERISTIC'...'a3.0

END I".
DESCRIPTION: "THIS ELEMENT INITIALIZES WAVEFORMJTABLE".

OUTPUTS:
FILE: WAVEF0RM.TA8LE,

REFERRED BY:
R.NET : CC.RESPONSE.

ALPHA : SUMMARIZE_USA6E.
BETA:
"BEGIN IF ACCOUNTED„FOR<>SUMMEO THEN BEGIN

SELECT FIRST FROM -AVEFORM.TABLE SUCH THAT
(WF_NAME=PULSE_TYPE)t

RESOURCES:=RESOURCES*KF.CHARACTERISTICS|
IF ACCOUMT£D_FOR=COUNTEO THEN DESTROY PULSE

ELSE ACCOUNTED«FOR:sSUMMEO

f

END
ENDI».

OESTROYSt
ENTITY.CLASS: PULSE,

INPUTS:
DATA: ACCOUNTEO.FOR
DATA: PULSEJTYPE
FILE: WAVEFORH.TABLE.

OUTPUTS:
DATA: ACCOUNTED_FOR
DATA: RESOURCES,

TRACED FROM:
ORIGlNATINGJ»EQUIREMENT: DPSPRJ_2.4.A.FUNCTI0NAL
ORIGINAT1N6.REQUIREMENT: DPSPRJJ«?Ji.D.FUNCTIONAL«

REFERRED BY:
RJ^ET : RADAR.SUMMARY,

E-14

m_i a!___i

Ml

■ »■iiiim»»iwn»w»«riim MMH
^P»~...,..II.',,..III'M. i. tpmmmmm-

.-, ■, ■ I-.I:.I1"».1-'. ■".'■■.■ '■ ■'" ■ "' ~ '■■' " '"
 ■ ■ -■ .

v- - "
.

€

ALPHA : TERH.ENGAGEMENT,
BETA:
•CONST X« STANDBY I
BEGIN HOOE:BX
ENOI".

OUTPUTS:
DATA: MODE.

REFERRED BY:
R„NET : CC.RESPONSE.

ALPHA : TERM.TRACK.
BETA:
"LABEL lOOl»
CONST XsCC.COMMAND_TO_OROP|

BEGIN SELECT FIRST FROM IMAGE_IN_TRACK SUCH
IF FOUND THEN SET 0R0PPED.IMA6E

ELSE
BEGIN

SELECT FIRST FROM OROPPED.IMAGE
(IMAGE^IOsHO^IO)!
IF NOT FOUND THEN GOTO 1001

END!
FORM TRACK.TERMINATIONI

CREATE TERMINATORI
OROP.TIME:aCLOCK.TIMEI
DROP REASON:=XI
DATA.RECORD.TYPE^TRACK.TERMINATION.REPORT»

REASON_FOR J)ROP:aX»
TI Mr. _nF JjROP : sDROP^T 1MF I

1001» ^ENOI".
FORMS:

MESSAGE: TRACK.JERMINATION,

INPUTS:
 CLOCK.T1ME

HO.ID.

THAT (IMAGE.I0=H0.ID)I

SUCH THAT

DATA:
DATA:

OUTPUTS«
DATA:
DATA:
DATA:
FILE:

""'ENT.TY.TyPe-.

"•"Tiir". «.RESPONSE.

DATA.RECORO.TYPE
PEASON^FOR.OROP
TIME.OF.DROP
TERMINATOR.

DROPPEO.IMAGE,

•

E-15

»»tMllHIIittllif&Mfci.iili

«•»iMJIWfcw^ms*««-«»^^ _,.,.,,.,, i

ALPHA » TPACK.INITIATE,
BETA:

"BEGIN
t

.

FORM TRACK_INITIATI0N|
CRfATE IMAGE»
SET IMAGE_IN_TRACK|
TIME.OF.INITIATIONlsCLOCK.TlMEl
IMA6E_I0S=H0„I0I
STATE^INlTIAL.STArEI
COVARIANCE^INITIAL.COVARIAMCEI
TRACK.RATE:=20.0I
WAVEFORM:*TII

OATA_RECOHD_TYPE:=TRäCK_INITIATION.REPORTI
ENTRr_TIME:sCLOCK_TIME

END»»,
CREATES:

ENTITY_CLASS: IMAGE.
FORMS:

MESSAGE: TRACK.INITIATION.
INPUTS:

CLOCKJTIME
HO.IO
INITIAL.COVARIANCE
INITIAL.STATE,

DATA:
DATA:
DATA:
DATA:

OUTPUTS:
DATA:
DATA:
DATA:
DATA:
DATA:
DATA:
DATA:
DATA:

COVARIANCE
DATA.RECORO^TYPE
ENTRY^TIME
IMAGE.IO
STATE
TIME.OF.INITIATION
TRACK.RATE
WAVEFORM.

fl $

SETS:
ENTITY.TYPE: IMAGE.IN.TRACK.

TRACED FROM:
0RIGINATIN6.REQUIREMENT: OPSPRJ3.2.1.A.FUNCTIONAL
ORIGINATING.REQUIREMENT: OPSPR»l.?Ji.A.FUNCTIONAL.

REFERRED BY»
R.NET : CC..RESPONSE.

ALPHA : T1_T2_MEASUREMENT_EXTRACTI0N.
BETA»
"BEGIN VALID RETURN:arRUEl

RADAR.MEASUREMENT :aTl.T2.RECEIVE
ENOt"*

INPUTS»
DATA»
FILE:

OUTPUTS»
DATA»
DATA:

Tl_T2.RECEIVE
T1.T2J)ATA.

RADAR.MEASUREMENT
VALID.RETURN.

REFERRED BY»
R.NET : RESPONSE.TO^RADAR.

E-16

* »m.f -"■|»," mm

ALPHA ! T3_MEASUREMENT.EXTRACTI0N,
BETAt

"BC6IN
VALIO.RETURN:=000(TRUNC(T3 RECEIVE»©.1))»

RADAR_MEASUREMENT:=T3_RECE1VE
ENO t ••.

INPUTS«
DATA! T3_RECEIVE
FILE! T3_0ATA.

OUTPUTS:
DATA: RADAR.MEASUREMENT
DATA: VALIO.HETUHN,

REFERREO 8Y:
R.NET : RESP0NSE..TO_RA0AR.

ALPHA : UPDATE_RAOAR„CLOCK.
BETA:
"BEGIN

RADAR. .CLOCK:=RAOAR_CLOCK_TIME
ENOI«,

INPUTS:
DATA: RA0AR_CL0CK_T1ME.

OUTPUTS:
DATA: RAOAR.CLOCK.

REFERREO Or:
R^4ET : RADARjriMING.

I

t
ALPHA : UPDATE,STATE.

BETA:
fBEGIN IF WAVFFORMaTI THFN tf4VFF0RH:=T? ELS€

IF WAVEF0RM=T2 THEN WAVEFORM:=T3 ELSE
WAVEFORM:aTll

FORM STATE.UPOATEI
HO.IO^IMAGE.IOI
STATE:= RAOAR.MEASUREMENTI
CURRENT_STATE:»STATE I

DATA_RECORD,.TYPE:sSTATE_UPOATE..HEPORTr
COVARIANCE:=CLOCK_TIME

ENDI«.
FORMS:

MESSAGE: STATE_UPOATE.
INPUTS:

DATA: CLOCK.TIME
DATA: IMAGE..ID
DATA: RADAR.MEASUREMENT

WAVEFORM. DATA:
OUTPUTS:

DATA:
DATA:

DATA:
DATA:

t

COVARIANCE
CURRENT.STATE

DATA: DATA.RECORO.TYPE
DATA: HO..IO

STATE
WAVEFORM.

TRACED FROM:
DECISION: TRACK.PERFORMANCE.ALLOCATION
0RIGINATIN6.RE0UIREMENT: DPSPR ,3_2_2_B_PERF0RMANCe
ORIGINATING.REQUIREMENT: DPSP <_I_?.?_O.FUNCTIONAL
DRIRINATING.RFOUIREMENT: 0PSPR_l_?.3_A_FUNCri0NAL.

REFERRED BY:
R.NET : RESP0NSE_T0_RADAR,

E-17

•*mmm

ALPHA : VALIDATE^HE-AOER.
BETA:
"BEGIN
ENDt".

INPUTS:
DATA: COMMANO.IO.

OUTPUTS:
DATA: CONMANO„IO.

TRACED FROH:-

REFE(,pE
RiG8y?TING-RE0UIReHtNT!0PS,,''-^-l-*.^CTI0N.L.

R«NET : CC.RESPONSE,

1

,

t
E-18

'*^****mmmmmm ■-'■'.■■■■'^^■■^A.i-:. ■■■;.;.;,,. LiJjt-^^^^Ji^

. »- -T« ' - ■■ ■

!^iJf3M6WWi^'JK]^M!*iMB,Sfc^ •' * ^"' ' ' "

C

DATA : ACCEPTANCE.THRESHOLO,
LOCALITY: LOCAL,
TYPE: REAL.
USE: GAMMA.
INCLUDED IN*.

DATA: TUT2_rjATE_DATA
DATA: T3_GATEJ)ATA,

DATA : ACCOUNTEDJFOR.
LOCALITY: GLOBAL.
RANGES "NEITHER.COUNTED.SUMMED".
TYPE: cNUMERATION.
USE*. BOTH,
ASSOCIATED WITH:

ENTITY_TYPE: LOST^PULSE
ENTITY_TYPE: RETURNED.PULSE.

INPUT TO:
ALPHA: ALLOCATE_ANO_CONTROL«RESOURCES
ALPHA: SUMHARIZE.USAGE.

OUTPUT FROM:
ALPHA: ALLOCATEJkNO.CONTROL.RESOURCES
ALPHA: SUMMARIZE.USAGE.

DATA : ALPHA„ERROR.
LOCALITY: LOCAL..
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: T1_T2_RECEIVE
OATA: T3_aECETWE.

DATA : ALPHAJ>HASE_TAPER.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: T1.T2.TRANSMIT
DATA: T3.JRANSM1T,

DATA : AVERAGE_SI6NALJ»0WER,
LOCALITY: LOCAL.
TYPE: REAL,
USE: GAMMAS-
INCLUDED IN:

DATA: WAKEJtRRAy.

t

DATA : BETA..ERROR.
LOCALITY: LOCAL.
TYPE: REAL.
USE: C-AMMA.
INCLUDED IN:

DATA: T1_T2„RECEIVE
DATA: T3_RECEIVE.

D*5YA : 0ETA„PHASE_TAPEH.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA,
INCLUDED IN:

DATA: TljrZ.TRANSMIT
DATA: T3..TRANSMIT,

E-19

i^^r<immmmmmmmmtiiMii. "IP"
——

^■'•■■e'i',' !

'W«*«WW'««I»MW««1W»W^^ ... ;;A..v.-jv!,.u■^..:^:^■.■■■:^:^■?^^:^■■-:wa■^^■^■.■i;::

DATA : CANOIOATE.ENERGY,
LOCALITY: GLOBAL.
TYPE: REAL,
USE: BOTH.
CONTAINED IN:

FILE: CANDIDATE.
INPUT TO:

ALPHA: MAKE.COMMAND.
OUTPUT FROM:

ALPHA: PICK.CANDIOATES.

DATA : CANOIOATE_IMAGE_ID.
LOCALITY: GLOBAL.
TYPE: INTEGER.
USE: POTH.
CONTAINED INt

FIL£: CANDIDATE.
INPUT TO:

ALPHA: MAKE.COMMANO.
OUTPUT FROM?

ALPHA: PICK.CANDIOATES.

DATA : CAN01DATE_WAVEFCRM,
LOCALITY: GLOBAL.
RANGE: "TltT2»T3".
TYPE: ENUMERATION.
USE: BOTH.
CONTAINED IN:

FILE: CANDIDATE.
IWPIJT TO»

ALPHA: MAKE.COMHANO.
OUTPUT FROM:

ALPHA: PICKJCANOIDATES.

0

DATA : CLOCK.TIME
(• A PREDEFINED DATA ITEM *HICH INCREMENTS AT THE

SAME RATE AS ENGAGEMENT TIME. EXCEPT FOR ITS
INITIAL_VALUE WHICH IS ARBITRARY, CLOCK.TIME MAY
BE REGARDED AS ENGAGEMENT TIME. IT HAS NO CLOCK
ERROR, •>.

LOCALITY: GLOBAL.
TYPE: REAL.
UNITS! SECONDS.
USE: BOTH,
INPUT TOS

ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:

ALLOCATE.AND.CONTROL.RESOURCES
COMPLETE_SUMMARY
GHOST.TERMINATION
INITIALIZE.SKEO.R
LOW.TERMINATION
REDUN.TERMINATION
TERM.TRACK
TRACK.INITIATE
UPÖATE^STATE-

E-20

".^mn mi
aim

•■«»IIHllll ' ^ „w^^. ■^Sv-..

■

DATA ! COMMANO^ENERQY,
LOCALITr: GLOBAL.
TYPE: REAL.
USE: BOTH*
CONTAINED IN:

FILE: COMMAND,
OUTPUT FROM:

ALPHA: MAKE.COMMANO,

DATA : COMMANO.ID,
LOCALITY: LOCAL.
RANGE:
"HANnOVER_IMAGEtOpOP_TRACK.lNITIATE_ENGAGEMENT_MOOEt
TERM INATE_EN6AGEMENT_M0DE".

TYPE: ENUMERATION.
USE: ROTH.
MAKES:

MESSAGE: ACKNOWLEDGEMENT
MESSAGE: HANDOVER
MESSAGE: MOOE.CHANGE
MESSAGE: TERMINATION.

INPUT TO!
ALPHA: VALIOATE.HEADER.

OUTPUT FROMi
ALPHA! VALIOATE_HEADER.

REFERRED BY:
R.NFT ! CC.RESPONSE.

DATA : COMMANO.lMAGE_IO.
LOCALITY! GLOBAL.
TYPE: INTEGER.
USE: BOTH.
CONTAINED IN:

FILE: COMMAND.
OUTPUT FROM:

ALPHA: MAKE.COMMANO.

«

DATA : COMMANO_WAVEFORM.
LOCALITY! GLOBAL.
RANGE! "T1.T2.T3".
TYPE! ENUMERATION,
USE! BOTH.
CONTAINED IN:

FILE! COMMAND.
OUTPUT FROM:

ALPHA! MAKE.COMMANO.

DATA ! COVARIANCE,
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BETA.
ASSOCIATED WITH:

ENTITY_TYPE: IMAGE.IN.TRACK.
OUTPUT FROM:

ALPHA! TRA ^„INITIATE
ALPHA: UPDATC.STATE.

E-21

ppwMppnp w0M*Ki&i*WiiiMmät0ißmm mMmmmmmiu^ ■ ——WM 1W—■■ "^^«^Kmummmm''

i ^

•

DATA : CURRENT.STATE,
LOCALITY: LOCAL.
TYPE: REAL.
USE: BETA.
MAKES!

MESSAGE! STATE_UPDATE.
INPUT TO:

ALPHA: LOW_ELEVATION_OETERMINATIOH
ALPHA! REDUN.DETERMINATION.

OUTPUT FROM!
ALPHA: UPDATE.STATE.

DATA ! OATAJ*ECORO_TYPE.
LOCALITY: LOCAL.
RANGE!
"RADAR USAGE REPORTfSTATE_UPOATE.REPORT.
TRACK.TERMINATION.REPORT.THACK.INITI ATION_REPORT".

TYPE! ENUMERATION.
USE! BOTH.
MAKES!

MESSAGE!
MESSAGE:
MESSAGE:
MESSAGE!

OUTPUT FROM!
ALPHA!
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA!

u

RAOAR.USAGE
STATE..UPDATE
TRACK..INITIATION
TRACK_TERMINATION.

COMPLETE.SUMMARY
GHOST.TERMINATION
LOW_TERMINATION
REDUN.TERMINATION
TERM_TRACK
TRACK.INITIATE
UPOATE.STATE.

9

DATA J DELTAT.
DESCRIPTION!

"MINIMUM PULSE SPACING FOR BEAM SWITCHING. •'.
INITIAL.VALUE! 3.0E-6.
LOCALITY! LOCAL.
TYPE: REAL.
USE! BOTH.
INPUT TO!

ALPHA! MAKE.COMMANO.

DATA ! OROP_FLAG.
LOCALITY: LOCAL.
TYPE! BOOLEAN.
USE! ROTH.
OUTPUT FROM!

ALPHA! FIND.CONFLICT.
REFERRED BY!

SUBNET ! FORM.FRAME.

E-22

^p

mqf**t

^ *'L
■ ■ .. .

■

■

I

t

DATA : DROP_REASOM.
LOCALITY: GLOBAL,

PA^GE: "GHOST,REDUNOANT,L0*.CC COMMANO.TOJ)ROPH.
TYPE: ENUMERATION.
USE: BOTH.
CONTAINED IN:

FILE: TERMINATOR,
TRACED FROM:

ORIGINATING.REQUIREMENT: OP5PR 1 ? ? A_FUNCTIONAL
ORJGINATING.REQUIREMENT: DPSP^'J'/^'R^PUNCTIONAL
ORIGINATING_REQUIREMENT: OPSP^II'^I?IO_FUNCTIONAL
ORIGINATING.REQUIREMENT: DPSPOI?J?I£-FU^CTION*L•

DATA : DROP.TIME,
LOCALITY: GLOBAL,
TYPE: REAL,
USE: ROTS,
CONTAINED IN?

FILE: TERMINATOR.

DATA : ELEVATIONJ_IMIT,
LOCALITY: GLOBAL,
TYPE: REAL.
USE: BOTH.
INPUT TO:

ALPHA: LOW.ELEVATION.DETERMINATION.

DATA : ENERGYJ30UNO,
LOCALITY: GLOBAL,
TYPE: REAL»
USE: GAMMA,

DATA : ENGAGEMENT.TIME.
LOCALITY: LOCAL.
TYPE: REAL.
USE: BOTH.
MAKES:

MESSAGE: RA0ARJJSA6E.
OUTPUT FROM:

ALPHA.* COMPLETE.SUMMARY.

DATA : ENTRY.TIME.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH,
ASSOCIATED WITH:

ENTITY_CLASS: IMAGE.
OUTPUT FROM:

AUPHA1 TRACK,INITIATE.
TRACED FROM;

ORIGINATING.REOUIREMENT: DPSPR«3«2-2«E.FUNCTI0NAL.

E-23

^ML - i J

■ .'.-S-Wt-^. »;„■„•

DATA : FOUND
(• A PREDEKINEO DATA ITEM iHICM tS SET TO EITHEP

TPUE OR FALSE AFTER EACH SELECT IN A BETA 0«
GAMMA. FOUND IS SET TO TRUE IF AN INSTANCE
SATISFYING THE SELECTION CRITERION IS LOCATED.
OTHERWISEt FOUND IS ASSIGNED THE VALUE FALSE. ♦!.

LOCALITY: GLOBAL.
TYPE! BOOLEAN.
USE: BOTH,
OUTfUT FROM:

ALPHA: PICK.COMMAND.
REFERRED BY:

R^NET : XMIT.R.

(.)

DATA S FRAHE.RATE.
INITIAL.VALUE: 0.01.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: ROTH.
DELAYS:

EVENT: SCHEDULE.
INPUT TO:

ALPHA: INITIALIZE.SKEOJ».

DATA ; GATEJ.ENGTM.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

wy I M • 'i_>C- „»J A T u«,D •» • A
DATA: T3_GATE_0ATA.

DATA : GATE.START.TIME.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: Tljr2j5ATEJ)ATA
DATA: T3„6ATEJ)ATA.

DATA : GHOST..IMAGE.
LOCALITY: LOCAL.
TYPE: BOOLEAN.
USE: BOTH.
OUTPUT FROM:

ALPHA: GHOSTJ)ETERMINATION.
TRACED FROM:

ORIGINATING.REOUIREMENT: DPSPR.3-2.;».B.FUNCTI0NAL
ORIGINATING.REQUIREMENT: DPSPRJ.2.3.C„FUNCTIONAL.

REFERRED BY:
P.NET : RESPONSE.TO..RADAR.

E-24

^iiim"»'iin mi , ^ mm mug *.-»%;. ■

-,;...;.,ir,:..:,.,-v.,.-.„. . .,.:H.:., .,:,,,„,. . . ,,:,.,,.,,■, ...-,,imiy..r.: vs^.rw^^^^^^ ' ^ i ?'W-^'

0«TA : HO^IO,
tOCACIT/'J LOCAL,
TYPE: iHltMQ.
USE: 83f^#
HAKES:

MESSAGE:
MESSAGf:
MESSAGE:
MESSAGE:
MESSAGES

INPUT TO:
ALPHA:
ALPHA:

OUTPUT FROM
ALPHA:

- ALPHA:
ALPHA:
ALPHA:

MANOOVE»
: STATE.UPOATE
: TEHMINATIOM
: TRArK.INlTIATION
: TRACK_TEWMINATION,

TERM_TRACK
TRACK_INITIATE,

GHOST.TERMINATION
LOW_TERMINATION .
REOUN.TEWMINATION
UPDATE STATE.

t

DATA : IMAGE^IO,
LOCALITY: GLOBAL»
TYPE: INTEGER,
USE: BOTH.
ASSOCIATED WITH«

ENTITY.CLASS:
INPUT TO:

ALPHA:
ALPHA:
ALPHA:
ALPH«:
ALPHA:
ALPHA:
ALPHA:
ALPHA:

IMAGE,

ACCEPT_AND_CHECK_RADAR_RETURN_MESSA6E
ALLOCATE_AMD_CONTROL_RESOURCES
GHOSTJTERMINATION
LCW.TEf^ir.'ATION
MAKE.COMMAND
PICK_CANOIDATES
REOUNJTERMINATION
UPDATE_STATE.

OUTPUT FROM:
ALPHA: TRACK_INITIATE.

DATA : INITIAL_C0VARIANCE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: BOTH.
HAKES:

MESSAGE: HANDOVER.
INPUT TO:

ALPHA: TRACK.INITIATE,

DATA s INITIAL_STATE.
LOCALITY: LOCAL.
TYPE: REAL.
USE! BOTH.
MAKES:

MESSAGE: HANDOVER
MESSAGE: TRACK.'NITIATION.

INPUT TO:
ALPHA: TRACK.INITIATE.

E-25

—■ .a'"-iii-afiviaa*iBw»Bi —.

^'-'-v - - , — ■- ., ' -'--^^ ■^l^Wimm^ammmm ■ ■ ■ ■■

DATA . 1ST,
OESCRIPTIOM« "INITIAL START VIME FOR THE FRAME.»,
LOCALITY: LOCAL.
TYPE» REAL.
USE: ROTH,
INPdT TO:

ALPHA: MAKE_COMMANO.
OUTPUT FPOM:

ALPHA: INITIALIZE_SKE0_R
ALPHA: HAKE.COHMANO.

DATA : LAST.AILOCATE.
LOCALITY. GLOBAL.
TYPE: REAL.
USE: BOTH,
INPUT TO:

ALPHA: ALLOCATE_ANO_CONTROL_RESOURCES,
OUTPUT FROMI

ALPHA: ALLOCATEJkND_CONTROL_RESOURCES,

DATA s LASTJ»ULSE,
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH.
ASSOCIATED WITH:

ENTITY.TYPE: IMAGE.IN.TRACK.
OUTPUT FROM:

ALPHA: MAKE.COMHAND.
REFERRED BY:

P_NET : SKEO.R.

DATA I LENGTH_OF_RECEIVE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: RECEIVE_INFORMATION.

DATA r LOW.ELEVATION,
LOCALITY: LOCAL.
TYPE: BOOLEAN.
USE! BOTH.
OUTPUT F«OM:

ALPHA: LOW.,ELEVATION.DETERMINATION.
. TRACED FROM:

ORIGINATING.REOUIREMENT: DPSPRJ.a.Z.C.FUNCTlONAL.
REFERRED BYl

H.NET : RESPONSE_TO_RADAR,

DATA t MODE.
LOCALITY! GLOBAL.
RANGE: "EN6AGED*STANDBY".
TYPE! ENUMERATION.
USE! BOTH.
OUTPUT FROM:

ALPHA! ENGAGEMENT.INITIATION
ALPHA! TE»M_ENGA6EMENT.

REFERRED BY!
R.NET I RADAR_SUMMARV
*J*tJ I SKED.R,

E-26

~«r-^*^_. U.
J'W^WBMWWBBii^iJjMBgMM

■■'•■■-"■■^■.: ^-i-^.^vv......,,^ ,...
■ ■: ■■ ■ ■ was*«s*«ws«wj«w,Bw^^ ■■

t

DATA : NOISE.LEVEL.
LOCALITY: LOCAL.
TYPE: REAL,
USE: GAMMA,
INCLUDED IN:

OATft: Tl.Ta.RECORD
DATA: T3_WEC0R0,

DATA : PRIORITY,
LOCALITY: GLOBAL,
TYPE: REAL,
USE: BOTH.
ORDERS:

FILE: CANDIDATE,
FILE: CANDIDATE,

OUTPUT FROM:
ALPHA: PICK.^CANOIDATES.

TRACED FROM:
DECISION: TRACKJ'ERFORMANCE ALLOCATION
0RIGINATINGJ?EQUIREMENT: DPSPR^.a^.B.PERFORMANCE«

DATA : PULSE.IO,
LOCALITY: GLOBAL,
TYPE: INTEGER,
USE: BOTH,
ASSOCIATED WITH:

ENTITY.CLASS: PULSE.
INPUT TO:

ALPHA: ACCEPT_AND-CHECK_RADAR.RETURN_MESSA6E.
OUTPUT FROM:

ALPHA: PICK.COMMANO.

DATA : PULSE^TYPE.
LOCALITY: GLOBAL.
RANGE: "T1»T2.T3".
TYPE: ENUMERATION.
USE: BOTH.
ASSOCIATED WITH:

ENTITY.CLASS: PULSE.
INPUT TO:

ALPHA: ACCEPT.AND^CHECK.PADARJ*ETURNJ«ESSAGE
ALPHA: ALLOCATE.AND.CONTROL.RESOURCES
ALPHA: SUMMARIZEJJSAGE.

OUTPUT FROM:
ALPHA: PICK.COMMANO.

t

DATA : RADAR_CLOCK.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH.
OUTPUT FROM:

ALPHA: UPOATE.RAOAR.CLOCK.

E-27

-^• HBW mum ■■■fyVYra'—-^:;:*'*a*'-,-*-iM^*-"pfä MQVH

■ ...

DATA : RAnAR_CLOCK_TlME,
LOCALITY: LOCAL.
RESOLUTION: 6.25E-9,
TYPE: REAL.
UNITS: SECONDS.
USE: BOTH.
MAKES:

MESSAGE: R_CL0CK_MESSA6E.
INPUT TO:

ALPHA: UPOATE_RAOAR_CLOCK.
TRACED F^OM:

ORIGINATING.REQUIREMENT: RADAR^PS.IFS.S^.^FUNCTIONAL.

DATA : RADAR_MEASUREMENT.
LOCALITY: LOCAL,
TYPE: REAL.
USE: BETA.
INPUT TO:

ALPHA: GHOST_DETERMINATION
ALPHA: UPDATE^STATE.

OUTPUT FROM:
ALPHA: T1_T2.MEASUMEMENT_EXTRACTI0N
ALPHA: Ta.MEASUREMENT.EXTRACTION,

DATA : RAOAR_MODEL_DATA,
LOCALITY: GLOBAL.
TYPE: REAL.
USE: GAMMA.

DAT» J RAOAR.TYPE,
LOCALITY! LOCAL.
RANGE: "11*12*13»,
TYPE: ENUMERATION.
USE: BOTH.
MAKES:

MESSAGE: T1_T2_CCMMAN0
MESSAGE! T1_T2_R1LTURN
MESSAGE: Ta.COMMANO
MESSAGE: T3_RETURN,

INPUT TO:
ALPHA: ACCEPT_AN0_CHECK_RADAR_RETURN_MESSA6C.

OUTPUT FROM:
ALPHA: PICK.COMMANO.

REFERRED BY»
R.NET : RESPONSE.TCRAOA«
RJitl t XMITJ*.

^

DATA : RANGE_HAHK_GENERATION_TECHNIOUE.
LOCALITY: LOCAL.
TYPE: INTEGER,
USEt GAMMA,
INCLUDED IN:

DATA: T1.T2.GATE_DATA,

DATA t RANGE.HARK.INFORMATION.
INCLUDES:

DATA: RANGE.MARK.TIMC
DAYA: 5IGNAL.,AHPLITUD£,

INCLUDED IN: -
DATA: T1WT2_REC0R0
DATA: T3_RECORD. 9

-" * •*!•■

E-28

^"'"^SSKEPR«^ ■P':I,",T.!'I'IIIL"II w -mm

mmm

■■■ ■■■"■■■'" -^ «..--,.■■.,.■-,.,,,.,,....,,,.„,...-,^,-,..,,,,,„.,.,.,,.,

t

DATA : RANGE.HARK.TECHNIQUE,
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA,
INCLUDED IN:

DATA: T3J5ATEJ)ATA.

DATA : RANGE_MARK_TIME.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: RANGE.MARK^INFORMATION.

DATA : REASON_FOPJ)ROP.
LOCALITY: LOCAL.
RANGE: "GHOST.REDUNDANT.LOK.CC.COMMAND.TO.OROP".
TYPE: ENUMERATION.
USE: BOTH.
MAKES:

MESSAGE: TRACK.TERMINATION.
OUTPUT FROM:

ALPHA: GHOST.TERMINATION
ALPMA: LOW.TERMINATION

REDUN.TERMINATION
TERMJTRACK.

ALPHA:
ALPHA:

TRACED FOOM:
ORISINATTNG.REOUIREMENT:
ORIGINATING PEQUIREMENT:
ORIGINATING^REQUIREMENT:
ORIGINATING^REQUIREMENT:

DPSPR_3_2_2«A_FUNCTI0NAL
DPSPRJ^Z^-O.FUNCTIONAL
DPSPR_3 2.2_D_FUNCTI0NAL
DPSPR_3.2_2.E.FUNCTIONAL.

DATA

t

: REASON.FOR.TRANSMISSION.FAILURE.
LOCALITY: LOCAL.
RANGE:
"PRE_EMPTED_TRANSMlSSION»
RECEIVE.WlNDOW.OVERLAPt
TRANSMIT>INOOW_OVERLAP.
INS'JFFICIFNTJTRANSMlSSION.TIMEt
RADAR^COMMAND.INCONSISTENCY.
TRANSMIT.START.TIME.EXCEEDEO«,

TYPE: ENUMERATION.
INCLUDED IN:

DATA: T1T2RTN.ERR0R.REP0RT
DATA: T3RTN.ERROR.REPORT.

DATA : RECElVE_INFO»MAT!ON.
INCLUDES:

DATA! LENGTHJDF.RECEIVC
DATA: RECEIVE.START.TIME
DATA: RECEIVER.6A1N.SETTIN0,

INCLUDED IN:
DATA: T1.T2_TRANSMIT
DATA: T3.TRANSMIT,

E-29

 ■— mnwnnujiniiimiiiiiiuu -ms&simamtr

DATA : RECnvE_START..TlME#

UOCALITY: LOCAL.
TYPE: REAL.
USES GAMMA.
INCLUDED IN:

DATA: RECEIVE_INFORMATION.

DATA : RECEIVE.STOP.
LOCALITY: GLOPAL.
TYPE: REAL.
USE: ROTH.
ASSOCIATED WITH:

ENTITY_TYPE: Tl.TiJ.JHiLSE
ENTITY.TYPc: T3_PULSE.

INPUT TO:
ALPHA: ACC(1"PT_.AND.CHtCK-RADAR-RETURN MESSAGE«

OUTPUT FROM:
ALPHA: F0RMWT1_T2
ALPHA: FORCLTJ.

DATA : RECEIVER_GAIN„SETTIN0,
LOCALITY: LOCAL..
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: RECEIVE.INFORMATION.

DATA s REDUNOftMT_TMAiSE.
LOCALITY: LOCAL.
7YrE: SOOLCAN.
USE: ROTH.
OUTPUT FROHI

ALPHA: REOUN.DETERMINATION,
TRACED FROM:

ORIGINATING.PEOUIREMENT: DPSPR_3.2«2_A FUNCTIONAL
ORISINATING.REOUIREMENT: DPSPR.3_2_3.BlFUNCTIONAL.

REFERRED BY:
P.NET : RESPONSE.TO.RAOAR.

DATA : RESOURCES.
LOCALITY: LOCAL.
TYPE: REAL.
USE! BETA.
HAKESt

MESSAGE: RAOAft.USAGE.
OUTPUT FROM:

ALPHA: SUMHARIZE.USA6E.

DATA t RETURN_IHA6E_STATUS.
LOCALITY: LOCAL.
RANGE: "lN_TRACKfDROPPED.NO.ORDERtWRONG.ORDER".
TYPE: ENUMERATION.
USE: ROTH.
OUTPUT FROM:

ALPHA: ACCEPT_AND_CHECK_RADAR_RETURN MESSAGE.
REFERRED BYI

R.NET : RESPDNSE.TO^RAOAR.

E-30

*#'

 «#

 ^ - :■■■■-■■■■- -■..■■..:-:■.-t,-.:,--.*- <■■■ .-.>:-V-..^^Ä^«a^fW^WMW^1^^^
. ■ -,...■: : -

•
DATA : RR.OROER.ID,

LOCALITY: LOCAL.
TYPE: INTEGER,
USE: ROTH.
MAKESt

MESSAGE: Tl/ta.COMMANO
MESSAGE: TlCT2_RETURM
MESSAGE: T3_COMMANO
MESSAGE: T3_RETURN.

INPUT TO:
ALPHA: ACCEPTJWO.CHECKJUDAR.RETURN^MESSAGE,

OUTPUT FROM:
ALPHA: PICK.COMMANO*

■: t

DATA : RR_ORDER.IOC,
INITIAL^VALUEJ 0.
LOCALITY: GLOBAL.
TYPE: INTEGER.
USE: ROTH.
INPUT TO:

ALPHA*. PICK.COMMAND.
OUTPUT FROM:

ALPHA: PICK.COMMANO.

DATA : SIGNAL.AMPLITUOE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: RAMGE.MAHK.INFORMATION.

DATA

D»TA

: SIGNALJ'ROCESSING.MODE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: T1..T2J5ATEJ5ATA
DATA: T3.GATE.DATA.

: START.TIME.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH.
ORDERS:

FILE: COMMAND.
CONTAINED IN»

FILE: COMMAND.
INPUT TO:

ALPHA: FIND.CONFLICT
ALPHA: PICK.COMMANO.

OUTPUT FROM:
ALPHA: MAKE.COMMAND.

E-31

^gP^g^^WfMWWWHHW« iwmrwmitfwwiiiiiii

I^IMM«»»^^

ir

OAT* : STATE.
LOCALITr: GLOBAL.
TYPE: REAL.
USE: RETA.
ASSOCIATED WTTHS

ENTITY^TYPE« 1MA6E„1N_TRACK.
INPUT TO:

ALPHA: REOUN..DETERM1NATION,
OUTPUT FROM:

ALPHA: TRACK_INITIATE
ALPHA: UPOATE„STATE.

TRACED EROM:
• 0R1GINAT1N6_REQU1REMENT: DPSPR_3_2-3_A.FUNCTIONAL.

DATA i SUMHARYJUTE.
INITIAL.VALUE: 0.3.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: ROTH.
DELAYS:

EVENT: SUMMARIZE.

DATA ? TARGETED.
LOCALITY: GLOBAL.
TYPE: INTEGER.
USE: BOTH.
ASSOCIATED WITH:

ENTITY.CLASS: PULSE.
INPUT TOI

ALPHA! ÄCCE?T._AMO_CHECK_RADÄRJ5CTi;RN_MESSAGE.
OUTPUT FROM:

ALPHA: PICK.COMHANO.

DATA t TEOF.
LOCALITY: LOCAL.
TYPE: REAL.
USE: ROTH,
INPUT TO:

ALPHA: FIND.CONFLICT.
OUTPUT FROM:

ALPHA: INITIALIZE.SKED.R.
REFERRED BY»

R.NET : SKEDJ*.

DATA i THRESHOLD.OOWN.CROSSING.TIHE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: WAKE.ARRAY.

DATA J THRESHOLD.TYPE.
LOCALITY: LOCAL.
TYPE: REAL.
USE: GAMMA.
INCLUDED IN:

DATA: Tl.TZ.GATE.OAT»
DATA« T3.GATE.DATA.

,

•äV*

E*32

■■,^.,^.,,. 'y+ryS.r./--*^**$mm*tem '-rtJ^WBHe^BKwa^ff^v- ... , . ^(»^MS^,^^^,^^-^,':,.', ■■,, ■..■■:■.;-,■.■,:...,. ■...■,,■■..,;,■..,.,,....

• DATA : THPESHOLO_UP_CROSSING_TIME.
LOCALITY: LOCAL,
TYPE: PEAL,
USE: nAHMA.
INCLUDED IN:

DATA: WAKE_ARRAY»

DATA : TIME^0FJ)POP,
LOCALITY: LOCAL.
TYPE: PEAL.
USE: ROTH,
MAKES:

MESSAGE: TRACK.TERMINATIOM,
OUTPUT FPOM:

ALPHA: GHOST^TERMINATIOM
ALPHA: LOW_TERMINATION
ALPHA: PEDUN.TERMINATION
ALPHA: TEr<M,TRACK,

DATA : TIME.OF.INITIATION,
LOCALITY: LOCAL,
TYPE: REAL,
USE: ROTH,
MAKESt

MESSAGE: TRACK.INITIATIOM^
OUTPUT FROM:

ALPHAS TRACK..INITIATE,

DATA t TRACK_PATE,
LOCALITY! Gl ORAL,
TYPE: REAL.
USE: ROTH,
ASSOCIATED WITH:

ENTITY.TYPE: IMAGE.IN.TRACK,
OUTPUT FROM:

ALPHA: ALLOCATE_AND_CONTROL«RESOURCES
ALPHA: TRACK_INITIATE,

REFERRED 8YS
R.NET t SKEO.R,

DATA : TRANSMTT_START,
LOCALITY: LOCAL,
TYPE: REAL.
USE: ROTH,
MAKESt

MESSAGE*. T1.T2_C0MMAND
MESSAGE: T3WC0MMAMD,

OUTPUT FROM:
ALPHA: PTCK.COMMAND,

E-33

-"■P*- """i'': ■ ' ""i

;
'!immmym'S^*m!^.-^mmmmmm».'** - , , , ^mmmm^mm^f^^mm^^^^vr^ ■:> ■'»^''•n ■■'■■

DATA : Tl_T2_6ATE_0ATA.
LOCALITY: LOCAL,
TYPE: REAL.
USE: BETA.
INCLUDES:

DATA: ACCEPTANCE.THRESHOLO
OATA: 6ATE.LENGTH
DATA: GATE.START.TIME
OATA: RANGE.KARK.GENERATION.TECHNIQUE
DATA: SIGNALJ'ROCESSING.HOOE
DATA: THRESHOLO_TYPE.

CONTAINED IN:
FILE: TUT2.6ATE.

9

ALPHA_ERROR
BETA.EPROR •
TIT2RTN.ERR0R_REP0RT
WAKE.ARRAY.

DATA : Tljr2_RECEIVE.
LOCALITv: LOCAL.
TYPE: REAL.
USE: BOTH.
INCLUDES:

DATA:
DATA:
DATA:
DATA:

MAKES*
MESSAGE: T1.T2.RETURN.

INPUT TO:
ALPHA: Tl.T2«MtASUREMENT.EXTRACTI0N.

DATA : Tl_T2.RECORf).
LOCALITY: LOCAL.
TYPE: REAL.
USE*. BETA.
INCLUDESt

DATA: NOISE.LEVEL
DATA: PANGE.MARK.INFORMATIOM.

CONTAINED IN:
FILE: Tl.TZ.OATA.

DATA : T1.T2.TRANSMIT.
TYPE: REAL.
USE: BETA.
INCLUDES:

DATA: ALPHA.PHASE.TAPER
DATA: BETA.PHASEJTAPER
DATA: RECEIVE.INFORMATION.

MAKESt
MESSAGE: TI.T2.COHMANO.

OUTPUT FROM»
ALPHA» F0RM.Tl.T2.

9

DATA » TI.T2.WIN0OW.OATA.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: ROTH,
CONTAINED INI

FILES TI.T2.WIN00«.

1

E-34

.M»JL
«-'«wjTOftWHWswMbtt ti^*Mmitmicatmmmmm&amH^^

,.,.- ,, V..^:,, :^W::..,}y^^^^
'tSiigSim^tmkamg^mm'mh-' * ■■ * --..^^■■. i,i>:.^.i .■^.^.^.V^^^^^ !;■

DATA : Tl_T2.XMIT.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: ROTH.
ASSOCIATED WITH:

ENTITY.TYPE: Tl_T2 PUL-SÄM
OUTPUT FROM:

ALPHA: FORH.Tl.Ta.

DATA : T1T2RTM_ERR0R REPORT.
INCLUDES:

DATA: REASON.FOR TRANSMCSS:IOf<tafAiI'LÜJlE..
INCLUDED IN:

DATA: TI.TZ.RECCIVE.

DATA s T3_GATE_0ATA.
LOCALITY: LOCAL.
TYPE: REAL.
USE: RETA.
INCLUDES:

DATA:
DATA:
DATA:
OATA:
DATA:
DATA:

CONTAINED

ACCEPTANCE.THRESKOUO
GATE.LENGTH
GATE.START.TIME
RANGE.MARK.TECHNlOUt
SlGNAL_PROCESSlNG«HOOf
THPF.SHOLD.TYPE.

IN:
FILE: T3J5ATE.

urn i « • I .j_rM.V«w 4 * C •

LOCALITY: LOCAL.
TYPE: REAL.
USE: ROTH.
INCLUDES:

DATA: ALPHA„ERROR
DATA: BETAJERROR
DATA: T3RTN«ERROR„REPOIIT
DATA: WAKE.ARRAY.

HAKES:
MESSAGE: T3.RETURN.

INPUT TO:
ALPHA: T3.MEASUREMENT.EXTRACTI0N,

DATA : T3_RECORO.
LOCALITY: LOCAL.
TYPE: REAL.
USE: BETA.
INCLUDES:

DATA: NOISEJ-EVCL
DATA: RAN6E.HARK.INFORMATI0N»

CONTAINED INt
FILE: T3.0ATA.

E-35

DATA : T3_TRANSMIT,
TYPE: REAL.
USE: BETA.
INCLUDES:

DATA: ALPHA.PHASE_TAPER
DATA: BETA.PHASE.TAPER
DATA: RECEIVE..INFORMATION.

MAKES:
MESSAGE: T3.C0NMAND,

OUTPUT FROM:
ALPHA: FORHjra.

DATA : T3>lNOOW_OATA.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BETA.
CONTAINED INt

FILE: T3.WIN00W,

DATA : T3_XMIT.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH.
ASSOCIATED MITHt

ENTITY.TYPE: T3_PULSE.
OUTPUT FROM:

ALPHA: FGRM.T3.

DATA : T3PTN_ERR0R-REP0RT.
INCLUDES:

DATA: REASON_FOR_TRANSMISSION-FAILURE,
INCLUDED IN:

DATA: T3.RECEIVE.

DATA : VALIO.RETURN.
LOCALITY: LOCAL.
TYPE: BOOLEAN.
USE: BOTH.
OUTPUT FROM:

ALPHA: T1.T2.MEASUREMENT.EXTRACTI0N
ALPHA: T3.MEASUREMENT.EXTRACTIDN.

REFERRED BY:
R.NET : RESPONSE.TO..RAOAR.

DATA : MAKE.ARRAY.
INCLUDES:

DATA: AVERA6E„SI6NAL.P0«ER
DATA: THRESM0LD.00WN.CR0SSIN6.TIME
DATA: THRESHOLD.UP^CROSSING.T I ME .

INCLUDED IN«
DATA? T1_T2.RECEIVC
DATA» T3.RECEIVC.

1

t
E-36

I — "■qmjm^tMm*** -—,y —

■.. '■' . ■■,. ■ ■< ■■■■■■ ■-■ ■■ -. .,-,.■,■:

^■■■■■. " ■"■ ' .'
■ ■' ■

■ . .- ■ ,,.-. .■- - ^./:=;- ■- ..■.■.-^■.-■.--.^-,-P-.-.-... .•--

• DATA : WAVFFORH,
LOCALITY: GLOBAL.
RANGE: MTl»T2tT3".
TYPE: ENUMERATION,
USE: BOTH.
ASSOCIATED WITH;

ENTITY.TYPE: IMAGE.INJfRACK.
INPUT TO:

ALPHA: ALLOCATE_ANO_CONTROL_RESOURCES
ALPHA: PICK.CANOIOATES

(•INSTANCES OF ENTITY.TYPE IMAGE IN mc*®»
ALPHA: UPDATE_STATE.

OUTPUT FROM:
ALPHA: TRACK.INITIATE
ALPHA: UPOATE.STATE.

DATA : WF.CHARACTERISTICS.
LOCALITY: GLOBAL.
TYPE: REAL.
USE: BOTH,
CONTAINED IN:

FILE: WAVEFORM.TABUE.

: c
DATA ; WF.NAME.

LOCALITY: GLOBAL.
RANGE: "TltT2tT3",
TYPE: ENUMEPATIOM,
USE: BOTH,
CONTAINED IN:

FILE? y*.VEFOR!l*—TABLE»

DATA I WINDOW,
LOCALITY: GLOBAL.
TYPE: REAL,
USE: GAMMA,
CONTAINED IN:

FILE: COMMAND,

¥ft:

DATA : XMIT_START,
LOCALITY: GLOBAL«
TYPE: REAL,
USE: BOTH.
ASSOCIATED WITH:

ENTITY.CLASSi PULSE,
OUTPUT FROM:

ALPHA: PICK.COMHAMO,

mS

E-37

-^t?-—> «&
immaiiijiiiipMiiw

'
i

■MIHEI

■nmgmmgtmK-

DECISION : RA0AR_SCHE0ULER_PRIORITIZATI0M.
ALTERNATIVES:

»I. SCHEDULE PULSE_BY.PULSt. THIS
NETS BUT WOULD OBVIATE OPTIHIZATI

2. OPTIMIZE OVER THE ENTIRE FRAME,
AS A WHOLE GIVES BEST RESULTS BUI
FACTORS FOR PULSE ENSEMBLES.

3. PRIORITIZE PULSES SUCH THAT ANY
PRIORITY BEATS ALL PULSES OF LOWE
SUBOPTIMAL» BUT REALIZABLE BOTH i
THE SOFTWARE DESIGN. NO A PRIORI

"OPTION 3. PRIORITIZED

WOULD SIMP! IFY THE
ON*
TAKING THE FRAME
REQUIRES WEIGHTING

PULSE OF HIGH
R. THIS IS
N THE SPEC AND IN
WEIGHTS NEEDED,",
PULSES".

FINITE RADAR FRAME,
INTENDED ORDERS.".

CHOICE:
PROBLEM:

"OPTIMIZATION OF RADAR USAGE REQUIRES A
THIS IMPLIES A PRIORITIZATION SCHEME FOR

TRACES TO:
R_NET: SKEO..R
R_NET: XMITJ?.

TRACED FROM:
ORIGINATING.REQUIREMENT: DPSPR.3.2_4.B.FUNCTIONAL.

DECISION : SYNCMPONOUS.VS.ASYNCHRONOUS^TRACK.
ALTERNATIVES:

"1. SYNCHRONOUS TRACKING (OR RESPONSIVE»
REQUIRES THE LAST RADAR RETURN ON
AN IMAGE BE USED TO
PRODUCE THE NEXT RADAR
ORDER.

2. ASYNCHRONOUS TRACKING "OR AUT06ENIC"
ALLOW* A TP».CK PULSE
TO BE SENT USING WHAT EVER
STATE IS IN THE DATA BASE.".

CHOICE?
"ASYNCHRONOUS TRACKING IS

SELECTED TO MAXIMIZE THE
ALLOWED OP TIME RESPONSE
FOR PROCESSING RADAR RETURNS.
THIS DOES NOT PROHIBIT A RESPONSIVE
TRACKING IMPLEMENTATION.",

PROBLEM:
"TRACKING CAN BE EXPRESSED AS

SYNCHRONOUS OR ASYNCHRONOUS."^
TRACES TO:

ALPHA: PIC»f.CANDIDATES.
TRACED FROM: ^

ORIGINATING.REQUIREMENT: OPSPR^.2^3.A.FUNCTIÜNAL«

«I

E-38

»nwmnMiiiiiwitaiwrii

■■■■■■ ..■...■ -

%»

DFCISION : TRACK.PERFOPMANCE.ALLOCATION.
CHOICE:

"1. ALLOCATION WILL BE PfPFOPMEO TO CONSTRAIN
IMAGE 5TATES AND PATFS AT ALL TlMESt

2. PULSE SCHEDULING WILL BE CONSTRAINED
BY A PEALTIONSHIP BETWEEN IMA6E
STATES. ITS TRACK RATE*
AND THE RADAR CONSTRAINTS»

3, DEGHOSTING WILL BE A FUNCTION OF
PADAP MEASUREMENTS ONLY.

A, "UPDATE STATE" WILL BE CONSTRAINED
BY ITS DIFFERENCE
IN BETA AND CEP FROM A
"PERFECT FILTER".

5, REDUNDANT IMAGE ELIMINATION
PERFORMANCE
WILL BE EXPRESSED IN TERMS OF
STATES ONLY.",

PROBLEM;
"TRACK ACCURACY IS A JOINT FUNCTION OF
THE TRACK RATE. SUCCESSFUL SCHEDULING»
ACCURATE PULSE COMMANDS» AND ACCURATE
PROCESSING OF THE RADAR RETURN".

TRACES TO:
ALLOCATE JVND.CONTROL.RESOURCES
FIND.CONFLICT
GHOST.DETERMINATION
RFOUN_DETERMINATlON
UPDATE_STATE

ALPHA:
ALPHA:
ALPHA:
ALPHA:
ALPHA:
ruTA! PRTÜPITY.

TRACED FROMJ
ORIGINATING.REQUIREMENT: DPSPR_3_2.2_A-PERF0RMANCE
ORIGINATING^REQUIREMENT: DPSPR.3.2.?.3_PERF0RMANCE
ORIGINATTNG_REQUIREMENT: DPSPR..3_2..3.A..PERFORMANCE
ORIGINATING.REQUIREMENT: DPSPR.3.2.3.B.PERFORMANCE
ORIGINATING..REQUIREMENT: DPSPR_3.2.3«C,PERFORMANCE
ORIGINATING.REQUIREMENT: DPSPR.3.2_3.0.PERFORMANCE.

t

E-39

ftüipässöäs .-sästs;
'"'" ■"■*sr*r 'Il1«

■■-"r^n&^-^Kri; ■ -- -wf&l®tommmmmmmmmmmmmmmmmmmmmmimmmmmmmiiimmiimmm<^'1- -".■«-- -, -■ ■ ^ ■ K

FMTITY_CLASS : iHAGt*.
ASSOCTATnS:

"ATA: FMT-*Y_TIME
HATA: I^AGt-I.IO.

COMPOSED OF:
PNTTTV.TYPE: OPO^PEO.IMAGE
•■VTrTy.TYPE: lM4(iE_IN-TrtACK.

f^fATF1) ^Y:

ALP'-tA: TPACK^INI riATF,

f

PULSE.ID
P'JLSE.TYPE
TARGtr^IO
XMIT^STAHT.

FMTITY.CLASS : PULSE.
ASSOCIATES:

DATA:
HATA:
oATfi :
HATA:

COMPOSED OF:
KNTITY.TYPE:
FNTITY.TYPE:
FMTITY.TYPE:
F^TITY.TYPE:

fPEATPO RY:
ALP-f i PICK.COMMANO.

DEST'JOVED FJY:
ALPHA: ALLOCATE„,AND.COMTROL.RESOl/PCES
ALPHA: SUMMA^IZEJiSARE.

TPACFO FPOM:
ORISINATING.REOUIPEMFNT: DPSP!»«l_?>.A_FUNCTIONAL.

LOSr_PULSP
PETUPNED.PULbE
T1_T2_PULSE
T3.PULSE.

E-40

JCIH .iiifBilMlllgllMlllWli ■ 'I! mmmmmmmmmm**

..■«««««8^«««%««»!»»^ .,.,.,.,.,,,,, t , , < ' '

FMTITY_TYOF : DUOPPfD.lMAGE.
ASSOCIATES:

FIL^: TF9MINATÜW.
COMPOSES:

FNTITY.CLASS: IMAGE,
SET HY:

ALPHA: GHOST_TER«INATION
ALPHA: LGW.TEFV'-IINATION
ALPHA: REDUN.TERMINATION
ALPHA: TERM^TPACK.

ENTITY_TYDF : IMAGE„IN_THACK.
ASSOCIATES:

PATA: COVARIANCE
OATA: LAST^PULSE
OATA: STATE
OATA: TPACK_PATE
DATA: WAVEFÖPM.

COMPOSES:
PNTITY.CLASS: IMAGE.

SET PY:
ALPHA: TOACK_INiriATE,

TRACFO FROM:
ORIGINATING.REQUIREMENT: DPSPR_3_?_3_A_FUNCTI0NAL.

REFEPRED BY:
R_NFT : SKEO.R.

ENTITY.TYPE : LOST^PULSE..
ASSOCIATES:

OATA: ACCOUNTEO_FOR.
COMPOSES:

cwTITy_CLASS: PULSE.
SET MY:

ALPHA: ACCEPT_ANO_CHECK_RADAR_RETJR(«i_MESSAGE.

ENTITY^TYPE : RETURNED_PULSE.
ASSOCIATES:

DATA: ACCOUNTED_FOk.
COMPOSES:

PMTTTY.CLASS: PULSE.
SET PY:

ALPHA: ACCEPT.AND.CHECK^RAOAR.RETURN.MESSAGE,
REFERPEO BY:

R.NET : RAOAP_SUMMARY.

FVTITY_TYPP : T1_T?_PULSE.
ASSOCIATES:

DATA: PFCeiVE.STOP
OATA: T1_T2_XMIT
FILE: Tl.Tp.niNDOW.

COMPOSES:
FNTITY.CLASS: PULSE.

SET «Yt
ALPHA: EORM_Tl_T2.

E-41

-,--— <£

. .-...: ^ .

fNTlTY.TYPP : ra.PULSF..
ASSOCIATFS:

OATft: HECtlVE.STOP
OATft: T3_XMIY
FILE: T3..WINOOW.

coMPO<;es:
FNTITY.CLASS: PULSE.

SET RV:
ALPHA: FORM_T3.

t

3

E-42

"■■ «ii -.—^, J *.

. ■. . . .

■ ■ ■■ ■ ■•..■...■ . . ■■ ■ , .

t

i

EVENT : ALLOCATE.
ENABLES:

R_NET: CONTROL .RESOURCES,
REFERRED BY:

R_NET : CC^RESPONSE
RJ4ET : RESPONSE.TO_RADAR,

EVENT : SCHEDULE.
ENABLES:

R_NET: SKEO_P.
DELAYED BY:

DATA: FRAME.RATE.
REFERRED BY:

R^NET : CC.RESPONSE
R«NET : XMIT.R,

EVENT : SUMMARIZE,
ENABLES:

R.NET: RADAR.SUMMARY,
DELAYED BY:

DATA: SUMMARY.RATE,
REFERRED BY:

R.NET : CC.RESPONSE
R.NET : RADAR.SUMMARY,

EVENT : XRB,
DESCRIPTION:

'TURNS ON R.NET XMIT.R FOR THE CURRENT FRAME,"
ENABLES:

R.NET; XMIT.R,
REFERRED BY:

R.NEf : SKED.R
R.NET : XMIT.R,

I

E-43

1.— m mn^i ^ i iiimai'iiwliii—ilBnumnii'in'i'i« ' ' ''"»-
mummm mtMm<mtmi»mimm*nmm

«•»fWAW^^^^

FILE : CANDIDATE.
CONTAINS:

DATA:
DATA:
DATA:
DATA:

ORDERED Br:
DATA: PRIORITY,

REFERRED BY:
R.NET : SKED.R,

CANDIDATE.ENERGY
CANDIDATE_IMA6E.I0
CANOIDATE.WAVEFORH
PRIORITY,

FILE : COMMAND,
CONTAINS:

DATA:
DATA:
DATA:
DATA:
DATA:

INPUT TO:
ALPHA:
ALPHA:
ALPHA:

ORDERED BY:

COMMAND.ENERGY
C0MMAND_IMA8E_ID
COMMAND.WAVEFORM
START.TIME
WINDOW,

F0RM.T1„T2
FORM.T3
PICK.COMMANO.

■ /

DATA: START.TIME,

FILE : TERMINATOR,
CONTAINS:

DATA: DROP.REASON
DATA: DROP.TIME,

ASSOCIATED WITH:
ENTTTY.TVPE: DR0PPED..IMA6E,

OUTPUT FROM:
ALPHA: GHOST.TERMINATION
ALPHA: LOW.TERMIMATION
ALPHA: REDUN.TERMINATION
ALPHAi TERM.TRACK,

FILE : TUT2.0ATA.
CONTAINS:

DATA: Tl.TZ.RECORO,
MAKES:

MESSAGE: T1.T2.RETURN.
INPUT TO:

ALPHA: T1.T2.MEASUREMENT.EXTRACTI0N.

FILE : TljrZ.GATE,
CONTAINS:

DATA: T1.T2.6ATE.DATA,
MAKES:

MESSAGE: T1.T2.C0MMAND.
OUTPUT FROM:

ALPHAI F0RM.T1.T2.

E-44

l-f- •■»^—-.,,..,«i'-].l,i. ■-*~-~*~ym.mi''i.nmf, „ .-».- IX

l:»-,-<::,,i:;-i*^..-.».*,..::,,,:,,.,, ."-.-,.;,..,.=.,■:: i:.i,.> ,.,.;,,. .,.......,,.„,, ,,...,
«WS««llr!WIWI««B»«*!»l»*!«lll«p»«fW^^ '

t

FILE : T1_T2_WIND0W.
CONTAINS:

DATA! Tl_T2_WI^DOW,_OATA,
ASSOCIATED WITH:

ENTITY.TYPE: T1_T2_PULSE,
OUTPUT F^OM:

ALPHA: F0RM_T1_T2,

FILE : T3J)ATA.
CONTAINS:

DATA.* T3_RECORD.
HAKES:

MESSAGE: T3J*ETURN.
INPUT TO:

ALPHA: TB.MEASUREMENT.EXTRACTION.

FILE : T3_6ATE.
CONTAINS:

OATA: T3_GATE-OATA.
MAKES:

MESSAGE: T3..COMMANO.
OUTPUT F90M;

ALPHA: FORM_T3.

FILE : T3J*IN00W.
CONTAINS:

DATA: T3_WINDOWJ)ATA.
ASSOCIATED WITH:

FNTITY_TYPE: T3_PULSE.
OUTPUT FROM:

«t_pMo; PORM.TS»

FILE : WAVEFORM.TABLE.
CONTAINS:

DATA: WF.CHARACTERISTICS .
DATA: WF.NAME.

INPUT TO:
ALPHA: ALLOCATE_AND_CONTROL_RESOURCES
ALPHA: PICK.CANDIDATFS
ALPHA: SUMMARIZE.USAGE.

OUTPUT FROM:
ALPHA: STARTER.

E-45

**■■ — y - -

INPUT.INTF.RFACE : CC.IN,
CONNECTS TO:

SUBSYSTEM*. SSCÜ.
ENABLES:

«-NET: CC«RESPONSE,
PASSES:

MESSAGE: HANDOVER
MESSAGE: MODE.CHANGE
MESSAGE: TERMINATION.

REFERRED BY:
R_NET : CC.RESPONSE.

INPUT.INTFRFACE : RADAR.CLOCK.IN.
CONNECTS TO:

SUBSYSTEM: SSRAOAR.
ENABLES:

R.NET: RADAR..TIMIN6,

PASSES:
MESSAGE: R.CLOCK.MESSAGE.

EXPLAINED BY*. REFERENCE: TLS.RADAR.DPS.INTERFACE.SPECIFICATION,

REFERRED BY:
R«NET : RADAR.TIMIN6,

INPUT.INTERFACE : RADAR.IN.
DESCRIPTION: "THE RADIN INTERFACE PROVIDES THE MECHANISM THROUGH

WHICH THE OPS RECEIVES RADAR SUBSYSTEM RETURNS IN
RESPONSE TO RADAR COMMANDS ISSUED BY THE DPS THROUGH
THE RADOUT INTERFACE. RADAR SUBSYSTEM RETURN MESSAGES
SHALL COMPLY WITH RFQUIPE»«E^T« SBECIFIEO !M TMF T« S
RADAR DPS INTERFACE SPEClFICATIONt PARAGRAPH^^^." •

ENTEREDJIY: «M.A.HELTON» MAY, 3.1976.".

CONNECTS TO»
SUBSYSTEM: SSRAOAR.

ENABLES:
RWNET: RESPONSE_TO.RADAR.

IMPLEMENTS: VERSION: ORIGINALJ»UBLICATI0NJ)ATE0<.AUGUST_1975.

PASSESt
MESSAGE: T1.T2.RETURN
MESSAGE: iT3J*ETURN.

ABBREVIATED BY I
SYNONYM! RADIN.

EXPLAINED Bv: REFERENCE: TLS.RADAR.DPS^INTERFACC.SPECIFICATION.

TRACED FROM: 0RI6INATIN6.RE .JIREMENTt OPSPRJ»ARAORAPH,3.2.

REFERRED BY;
R_NET : RESPONSE.TO.RAOAR.

0 I

0

E-46

$<$m^m**£**mv --T-r- ^.l-^;,,...;, ,„ ..„^
»«WS^'W»WS.W^>«:;»«»W'*»^*^AWrt'*tiiÄ-'S'-':ir "''"■ ^r'"'

MESSAGE : ACKNOWLCOGEMENT.
FORMED BY:

ALPHA: ACKNOWLLOGE.
MADE BY:

DATA: COMMAND.IO.
PASSED THROUGH:

OUTPUT_INTERPACE: CC.OUT,

MESSAGE : HANDOVER.
MADE BY:

DATA: COMMAND.ID
DATA: HO_ID
DATA: INITIAL_COVARIANCE
DATA: INITIAL.STATE,

PASSED THROUGH:
INPUT.INTERFACE: CC.IN,

TRACED FROM:
ORIGINATING.REQUIREMENT: 0PSPfl^«2.1.A_FUNCTI0NAL.

MESSAGE : MODE_CHANGE,
MADE BY:

DATA: COMMANO.IO.
PASSED THROUGH:

INPUT_INTERFACE: CC_IN.

MESSAGE : R.CLOCK.MESSAGE,
MADE BY:

DATA: RADAR_CLOCK_TIME.
PASSED THROUGH:

TNPJT.INTERFACE: RAOAR.CLOCK.IN*
yrccARc • OArtfiu USAÖf.

FORMED RV.
ALPHA: COMPLETE.SUMMARY.

MADE BY:
DATA: DATAJ?ECORD_TYPE
DATA: ENGAGEMENT.TIME
DATA: RESOURCES,

PASSED THROUGH:
OUTPUT.INTERFACE: DATA.RECORD.

TRACED FROM:
ORIGINATING.REQUIREMENT: DPSPR«3.2_5«D«FUNCTI0NAL.

MESSAGE : STATEJJPDATE.
FORMED BY:

ALPHA: UPDATE.STATE.
MADE BY:

DATA: CUORENT_STATE
DATA: DATA._RECORD.TYPE
DATA: HO.IO.

PASSED THROUGH:
OUTPUT_INTERFACE: DATA.RECGRO.

TRACED FROM:
0RIGINAT1NG.REQUIREMENT: DPSPR_3.2.5..C.FUNCTI0NAL.

E-47

iiWIWMI»

MFSSA6E : TERMINATION.
HADE BY:

DATA*. COMMAND.IO
DATA: HO.IO.

PASSED THROUGH:
1NPÜT_TNTERFACE: CC.IN,

TRACED FROM*.
0RIGINATIN6_REQUIREMENT: DPSPRJ3.2.2.E.FUNCTIONAL.

MPSSAGE : TRACK^INITIATION.
FORMED BY:

ALPHA: TRACK.INITIATE.
MADE BY:

DATA: DATA.RECORO.TYPE
DATA: HO_ID
DATA: INITIAL.STATE
DATA: TIME.OF.INITIATIOM,

PASSED THROUGH:
OUTPUT^INTERFACE: DATA.RECORO.

TRACED FROM: ORIGINATINCPEOUIREMENT: DPSPR^.2.5.A.FUNCTI0NAL.

MESSAGE : TRACK_TERMINATION.
FORMED BY:

ALPHA: GHOSTJTERMINATION
ALPHA: LOW_TERMINATION
ALPHA: PEDUN.TERMINATION
ALPHA: TERM.TRACK,

MADE BYJ
DATA: DATA^RECORO.TYPE
DATA: hO.IO
DATA: PEASON_FORJJROP
DATA: TIME.OF.OROP.

PASSED THROUGH:
OUTPUT.INTERFACE: DATA.RECORO.

TRACED FROM:
ORIGINATING.REQUIREMENT: 0PSPR.3.2.5.B.FUNCTI0NAL«

MESSAGE : TIJTZ.COMMAND.
EQUATED TO:

SYNONYM: T1T2CM0.
EXPLAINED BY:

REFERENCE*. TLS.RAOAR.OPS.INTERFACE.SPECIFICATIOM.

FORMED BYS
ALPHA: F0RM.T1.T2.

MADE BY:
DATA: RADAR.TYPE
DATA: RR.OROER.IO
DATA: TRANSMIT.START
DATA: Tl.T2„TRANSMIT
FILE: T1.T2.GATE.

PASSED THROUGH:
OÜTPUT.INTERFACE: RADAR.OÜT,

f

1

o
E-48

-<r—

„Jj,. '■>:fVlff^J^l^mm^s''lf!mt»mnWm»mmm^m^m^m-^r»'»~'-' ' -...^:.e..,-,.V-.-,.. .,,,-;.. ;•.■.;:■. , <..■■ ■ -•--'t■v^■.s,>v>*^--'vi■■■^/^^'■:•»V^^"^-:■..!■i■-■.■ ;,

!

MFSSAGE : T1_T2_PFTURN.
EQUATED TO:

SYMONYH: T1T2RTN.
EXPLAINED Br:

REFERENCE: TLS_RAOARJ)PS INTFRFACE.SPECIFICATION,
MADE «r:

DATA; RADARJTYPE
DATA: RR.ORDER_IO
DATA: T1.T2_RECEIVE
FILE: Tl_T2_OATA.

PASSED THROUGH:
INPUT.INTERFACE: RAOAR^IN.

(

MFSSAGE : T3_C0MMAN0.
EQUATED TO:

SYNONYM: T3CMO.
EXPLAINED BY:

REFERENCE: TLS_RADAR_DPS..lNTERFACE_SPECIFICATION,
FORMED BY:

ALPHA: FORMATS.
HADE BY:

DATA*. RADARJTYPE
DATA: RR.ORDER.IO
DATA: TRANSMIT.START
DATA: T3_TRANSMIT
FILE: T3_6ATE.

PASSED THROUGH:
OUTPUT.INTERFACE: RADAR.OUT.

MFSSAGE : T3_RETURN.
fQUATPO TOS

SYNONYM: T3RTN.
EXPLAINED BY:

REFERENCE: TLS.RADAR.DPS.INTERFACE.SPECIFICATION,
MADE RY:

DATA: RADAR.TYPE
DATA: RP_ORDER.ID
DATA: T3_RECEIVE
FILE: T3.0ATA.

PASSED THROUGH:
INPUT.1NTERFACE: RADAR.IN.

E-49

■■lipiH'

tejm-ü-.-Trnfuimi---- •», - >, .
■

ORlGlNATlNG.REOUIREMtNT : 0PSPR_PARAGRAPH_3_2.
TRACES TO:

IMPJT^INTERFACE: RADAR.IN
OUTOUT.INTERFACE: RAOAR.OUT.

t

0RIGINATIN6_REQUIREMENT i 0PSPR_3_2_1_A.FUNCTIONAL.
DESCRIPTIONS

"ACTIONS: ACCEPT C2 MESSAGE*INITIATE TRACK ON IMAGE»
SEND RADAR ORDER

INFORMATION: C? MESSAGE "INITIATE TRACK COMMAND"»
HANDOVER IMAGE» RADAR ORDER",

TRACES TO:
ALPHA: TRACK.INITIATE
ALPHA: VALIDATE.HEADER
MESSAGE: HANDOVER.

0RIGINATING_REQUIREMENT : DPSPR_l^_2.A_FUNCTIONAL.
DESCRIPTION:

" ACTION: SEND RADAR ORDER
INFORMATION: RADAR» REDUNDANT IMAGE,".

TRACES TO:
ALPHA: REDUN.DETERMINATION
ALPHA: REOUN_TERMINATION
DATA: DROP.REASON
DATA: REASON.FOR.OROP
DATA: REDUNDANT.IMAGE.

ORISINATING_RFOUIREMENT : DPSPR.A^^.A.PERFORMANCE,
TRACES TO:

DECISION: TRACK.PERFORMANCE.ALLOCATION,

ORIGINATING.PEQUIREMENT : OPSPR.3.2.2.8.FUNCTIONAL,
DESCRIPTION:

" ACTIONS: SEND RADAR ORDER
INFORMATION: GHOST IMAGE* RADAR ORDER.*.

TRACES TO:
ALPHA: GHOST_DETERMINATION
ALPHA: GHOST.TERMINATION
DATA: OROP.REASON
DATA: GHOST.IMAGE
DATA: REASON.FOR.DROP,

ORIGINATING.REOUIREMENT : DPSPR.3J?.2.B.PERFORMANCE,
TRACES TO:

ALPHA: ALLOCATE.AND.CONTROL.RESOURCES
ALPHA: FINO.CONFLICT
ALPHA: 6HOST_OETERMINATION
ALPHA: REOUN.OETERMINATION
ALPHA: UPDATE.STATE
DATA: PRIORITY
DECISION: TRACK.PERFORMANCE.ALLOCATION,

/'

E-50

iittii.mwn.i.tlij».- nm ^^mmmmm^^mm^^iiaiKfimsutKtfltKKSin

■

• ORIGINATING.REOUIREMENT : QPSPR_3_2 ? C FUNCTIONAL.
OÜSCRIPTION:

• ACTION: SEND RAOAR ORDER
INfORMATION: RAOAR ORDER« ELEVATION OF RAOAR OROEH",

TRACES TO:
ALPHA: F0RM_T1_T2
ALPHA: FORM_T3

OATA: LOW_ELEVATION,

I

ORIGINATING.REOUIREMENT : DPSPR_3_?_2 O.FUNCTIONAL.
DESCRIPTION!

U ACTION: SEND RADAR OROERt DETERM1NE_IMA6E_ELEVAT101
INFORMATION: iMAGEt ELEVATION OF iMAGEt RADAR ORO, ^t

TRANSMISSION TIME OF RAOAR ORDER««,
TRACES TO:

ALPHA: LOW_ELEVATION_O?TERMINATION
ALPHA: LOW_TfRMINATION •
ALPHA: UPDAIE_STATE
OAT*: DROP_REASON

DATA: PEASON_FOR_OROP.

0RI6INATIN6_RF0UIREMENT : DPSPR_3^_2_E_FUNCTI0NAL.
DESCRIPTION:

" ACTION: DROP TRACK ON HANDOVER IMAGF» SEND RADAR ORDER
INFORMATION: DROP TRACK C2 MESSAGE. RADAR OR

OCR* TRANSMISSION
TIME OF RADAR ORDER.".

TRACES TO:
ALPH»: TERM .TRACK
DATA: DROP..REASON
DATA I Ei'»TSY_.t IMc
DATA: PEASON_FOR_DROP
MESSAGE; TERMINATION.

OPTSINATING.REOUIREMENT J DPSPR_3_2_3_A_FUNCTIONAL.
DESCRIPTION:

" ACTION! MAINTAIN TRACK ON IMAGE
INFORMATION: IMAGE«'FSTIMATE OF STATF". RADAR RETURN«

TIME OF LAST PP3CESSE0 RETURN.«".
TRACES TO:

ALPHA: UPDATE.STATE
DATA: STATE
DECISION: SYNCHRONOUS_VS_ASYNCHRONOUS_TRACK
ENTITY_TYPE: IMAGE_IN_TRACK,

0RI6INATING_RE0UIREMENT : 0PSPR.3_2_3_A_PERF0RMANCE.
TRACES TO:

DECISION: TRACK.PERFORMANCE.ALLOCATION.

0RI6INATING_RE0UIREMENT : DPSPR_3^2_3_B_FUNCTIONAL.
DESCRIPTION!

•■ ACTION: DROP IMACE"PEnUNOAMT<«
INFORMATION! REDUNDANT IMAGE.".

TRACES TO!
ALPHA! REOUN.DFTERMINATION
DATA! REOUNOANT.IMAGC.

•

E-51

II
iftfltta

I&£ZZ^±> ' ' ' •rmvimmm m ■■ i_jP I

-

■ • ' m?me<m»mme»:-^^

OPIGINATING.REQUIPEMENT : DPSPR.3_P_3.B_PERFORMANCE,
TRACES TO:

DECISION: TRACK J>ERFORMANCE_ALLOCATION,

0PIGINAT1NG_REQUIREMENT : DPSPR_3_2_3 C.FUNCTIONAL.
DESCPIPTION:

" ACTION: DROP IMAGE"GHOST"
INFORMATION: GHOST IMAGE.".

TRACES TO:
ALPHA: GHOSTJ)ETERMINATION
DATA: GHOST_IMAGE.

ORIGINATING.REQUIREMENT : DPSPR_3.2_3.C.PERFORMANCE,
TRACES TO:

DECISION: THACK.PERFORMANCE_ALLOCATION.

OPIGINATING.REQUIREMENT : DPSPR_3«2.3.0.FUNCTIONAL,
DESCRIPTION:

" ACTION: SEND RADAR ORDER
INFORMATION: RADAR ORDER,. "•

TRACES TO:
ALPHA: ALLOCATE.ANO.CONTPOL.RESOURCES.

0RI6INATING.REQUIREMENT : DPSPR_3«2_3.0.PERFORMANCE.
TRACES TOJ

DECISION: TRACK.PERFORMANCE.ALLOCAriON.

0RI6INATING.REQUIREMENT : DPSPR.3^.3.E.FUNCTIONAL.
DESCRIPTION:

"ACTION: SEND RADAR ORDER
INFORMATION: RADAR ORDER.".

TRACES TO:
ALPHA: FIND.CONFLICT
ALPHA: F0RM.Tl.T2
ALPHA: F0RM.T3.

ORIGINATING.REOUIREMENT : DPSPR.3J2.4..A.FUNCTIONAL.
OESCRTPTION:

"ACTION: MAINTAIN ESTIMATE OF RADAR RESOURCES
INFORMATION: RADAR RESOURCE USAGE ESTIMATEt RADAR
ENERGY ESTIMATEt UPPER BOUND ESTIMATE.".

TRACES TO:
ALPHAS SUMMARIZE.USA6E
ENTITY.CLASS: PULSE.

0RI6INAT1N6.RE0UIREMENT :" DPSPR.3.2.4.B.FUNCTiaNAL.
DESCRIPTION:

"ACTION: ALLOCATE RADAR ORDERS
INFORMATION: RADAR ORDERS» IMAGE.".

TRACES TO»
ALPHA: ALLOCATE.AND.CONTROL.RESOURCES
DECISION: RADAR.SCHEDULER.PRI0RITI2ATION
R.NET: CONTROL.RESOURCFS. 9

E-52

MIM
-"■^„JIHi i. um ■.'■I"1!' mmmmm* ,

.-r^r; •;■ y,.;;'*»■;.-.;;,*: ^j;- „:,.,■„,.,,..i:.,,.,,.,,,. »: H™:..«,,,,«,^ . ,;.,.,■.„,.i,-,,.^^ „■;:» : ■ -» «"-.■.-- -,;■■.-.''-■■■■

f

c

ORIGINATING.REQUIREMENT : DPSPR 3_? 5 A.FUNCTIONAL.
DESCRIPTION!

«ACTION: OUTPUT TO PERMANENT FILE
INFORMATION: TIME OF APPEARANCE OF C2 MESSAGET
HANDOVER IMAGE (ESTIMATED STATE).",

TRACES TO:
ALPHA: TRACK..INITIATE
MESSAGE: TRACK_INITIATION.

ORIöIWATINß,REQUIREMENT : DPSPR 3_2 5 B FUNCTIONAL,

DESCRIPTION:
"ACTION: OUTPUT TO PERMANENT FILE
INFORMATION: TIME OF DROP TRACK. REASON FOR

DROP TRACK.",
TRACES TO:

ALPHA: TERMJTRACK
MESSAGE: TRACK^TERMINATWN.

OPIGINATINCREQUIREMENT : DPSPR 3_2 5 C.FUNCTIONAL.
DESCRIPTION:

"ACTION: OUTPUT TO PERMANENT FlLEt UPDATE STATE
INFORMATION: IMAGE STATE ESTIMATE.",

TRACES TO:
MESSAGE; STATE_UPDATE
R.NET: RE3PONSE.TO_RAOAR.

0PIRINATING_REQUIREMENT : DPSPRJ!I_2_5.D«FUNCTIONAL.
DESCRIPTION:

"ACTION: OUTPUT TO PERMANENT FILE
INFORMATION: RADAR RESOURCE USAGE,",

TRACES TO!
ALPHA: SUMMARIZEJJSAGE
MESSAGE: RAOARJJSAGE
R.NET: RADAR.SUMMARY.

ORIGINATING.REQUIREMENT : RADAR.DPS_IFS.3.2.9_FUNCTIONAL,
TRACES TO:

DATA: RAOAR.CLOCKjriME,

E-53

im
wmmmmmmtm

v.:::,:---^^,:,^,^,:^,, ^ri^v.^-^v^^jipig&wit^&gz*^^ ::>.^i-:^;'*-:^r:'-:iy.^:^:'y'S::c-.<-l^ ;■■.■■:

OUTPUT^INTERFACE : CC.OUT.
CONNFCTS TO:

SUBSYSTEM: SSC2.
PASSES:

MESSAGE: ACKNOWLEDGEMENT,
REFERRED BY:

R..NET : CC.RESPONSE.

OUTPUT.INTERFACE : DATA.RECORD.
CONNECTS TO:

SUBSYSTEM: SSPERMFL.
PASSES:

MESSAGE
MESSAGE
MESSAGE
MESSAGE

REFERRED BY:
R_NET :
R_NET :
R«NET :

RADAR_USA6E
STATE.UPDATE
TRACK.INITIATION
TRACK.TERMINATION,

CC_RESPONSE
RADAR^SUMMARY
RESPONSE.TO.RAOAR.

OUTPUT.INTERFACE : RADAR.OUT,
DESCRIPTION:

••THE RADOUT INTERFACE PROVIDES THE MECHANISM THROUGH
WHICH THE DPS ISSUES COMMANDS TO THE RADAR SUBSYSTEM,
THE RADAR SUBSYSTEM WILL EXECUTE ONLY THE COMMANDS
ISSUED BY THE DPS AND WILL TRANSMIT ONE PULSE FOR E^CH
COMMAND WHICH SATISFIES THE RADAR SUBSYSTEM AND
INTERFACE CONSTRAINTS. THE RADAR SUBSYSTEM WILL EXECUTE
THE COMMANDS IN THE ORDER RECEIVED AND WILL BEGIN
EXECUTION AFTER RECEIPT OF EN0_OF_TP*NSMISSION.»•

ENTERED.BY: "H.A.HELTON, APR. 30t 1Q76.",
CONNECTS TO:

SUBSYSTEM: SSRADAR.
IMPLEMENTS:

VERSION: 0RI6INAL.,PUBLICATI0NJ)ATED.AUGUST.l975.
PASSES:

MESSAGE: T1.T2.COMMANO
MESSAGE: T3_C0MMAND.

ABBREVIATED BY«
SYNONYM: RADOUT.

EXPLAINED BY«
REFERENCE« TLS.RADAR.DPS.INTERFACE.SPECIFICATION.

TRACEO FROM«
0RISINATIN6.REQUIREMENT: DPSPR.PARAGRAPH.3..2.

REFEROEO BY«
«NET « XMITJ.

t
E-54

«r;
i

' - ' *'mmzm&mmmmm**' 'l^^«^^W«»v^:**!»#«a*^^ ^\^P!-'*-^-::-'^:f

.NET : CC.RESPONSf-t
REFERS TO:

ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
DATA
EVENT
EVENT
EVENT

ACKNOWwEOGE
CC_ERROR_PROCESSING
ENGAGEMENT_INITlATION
STARTER
TERM.ENGAGEMENT
TERM_TRACK
TRACK_INITIATE
VALIDATE_HEADER

CO^MAND.IO

CC_IN
CC.OUT
DATA.RECORO,

c

ALLOCATE
SCHEDULE
SUMMARIZE

INPUT_INTERFACE :
OUTDUT_INTERFACE
OUTPUT.INTERFACE

ENABLED BY:
INP'JT.INTERFACE: CC_IN.

STRUCTURE:
INPUT.INTERFACE : CC.IN
ALPHA : VALIDATE_HEA0ER
DO

ALPHA : ACKNOWLEDGE
OUTPUT.INTERFACE : CC.OUT

AND
CONSIDER DATA : COMMAND.IO
DO

(HANOOVER.IMAGEI
ALPHA : TRACK^INITIATE
EVENT : AiLOCATE
OUTPUT.INTERFACE DATA_RECORO

OR

OR

(DROP.TRACK)
ALPHA : TEPM.TRACK
OUTPUT.INTERFACE : DATA.RECORO

(INITIATE^ENGAGEMENT.MODE)
ALPHA : STARTER
ALPHA : ENGAGEMENT.INITIATION
EVENT : SCHEDULE
EVENT : SUMMARIZE
TERMINATE

OR
(TERMINATE.ENGAGEMENT_HODE)

ALPHA : TERM_EN6A6EMENT
TERMINATE

OTHERWISE
ALPHA : CC.ERROR..PROCESSINS
TERMINATE

END
END

END

E-55

•— - •^

..

I

R.NET : CONTROL_RESOURCES.
DESCRIPTION:

"THE TLS.OPS SHALL IMPLEMENT THE REQUIREMENTS SPECIFIED
IN THE OPSPRt REFERENCE 2,2* ASSOCIATED WITH MANAGEMENT
AND CONTROL OF TLS RESOURCES AND SHALL PERFORM THE
FUNCTIONS HEREIN DEFINED AND DIAGRAMMED IN THE CONTRES R.NET,

THE DPS SHALL ASSIGN TRACK RATES AND ENERGY ALLOWANCES
TO EACH IMAGE HANDED OVER FROM COMMAND AND CONTROL
AND SHALL DETERMINE ENERGY BOUNDS AND TRACK RATE
ENVELOPES FOR EACH HANDOVER IMAGE WHICH REMAINS IN
TRACK STATUS. THE ENERGY ROUNDS AND TRACK RATE
ENVELOPES SHALL BE MAINTAINED WITHIN AN ACCURACY
AND RESOLUTION TOLERANCE SUFFICIENT TO MEET THE
SPECIFIED REQUIREMENTS FOR DETERMINATION OF TARGET
INTERCEPT CONDITIONS.

THE DPS SHALL ASSFSS STATUS OF THE TLS RESOURCES AND
SHALL ALLOCATE TLS RESOURCES TO EACH HANDOVER IMAGE
BASED ON RADAR SUBSYSTEM PERFORMANCE CAPABILITIES
AND SHALL MAINTAIN A GRACEFUL DEGRADATION POSTURE
WHILE UNDER OVERLOAD CONDITIONS.

THE DPS SHALL GENFRATE TLS RESOURCE UTILIZATION
PROFILES AND SHALL COMMIT THESE DATA TO PERMANENT
FILE THROUGH THE DATA RECORD OUTPUT INTERFACE,"• REFERS TO:

ALPHA : ALLOCATE.AND.CONTROL.RESOURCES, ABBREVIATED BY:
SYNONYM: CONTRES,

ENABLED BY:
EVENT: ALLOCATE,

TRACED FROM:

0RIGINATINGJ?EQUIREMENT: DPSPR^.a^.B.FUNCVIONAL. STRUCTURE:

ALPHA : ALLOCATE.AND.CONTROL.RESOURCES TERMINATE
END .

I

E-56

'* ' l ''■««^:«»i»«B«««WBiwssn«w*iÄ«^^ 'esoHW^öi^iSs^w^'-ip^wsi^v^^^^nwM^^-.^^ - ::ji'":::".niV

■
■

. .

R_NET : RAOAR_SUMM/»RY.
REFERS TO:

ALPHA : COMPLETE..SUMMARY
ALPHA : SUMMARIZE_USAGE
DATA : MODE
FNTITY.TYPE : PETURNED_PULSE
EVENT : SUMMARIZE
OUTPUT_INTERFACE : DATA_RECORO.

ENABLED BY:
EVENT: SUMMARIZE.

TRACED F90M:
0RIGINATIN6_REQUIREMENT: DPSPR.a.e.S.D.FUNCTIONAL.

STRUCTURE:
CONSIDER OATA : MODE
DO

(ENGAGED)
FOR EACH ENTITY_TYPE : RETURNED.PULSE
DO ALPHA : SUMMARIZE^USAGE END
AL0HA : COMPLETE_SUMMARY
EVENT : SUMMARIZE
OUTPUT.INTERFACE .: DATA.RFCORO

OTHERWISE
TERMINATE

END
END .

R NET : RADAR^TIMINQ.
DESCRIPTION:

"RADAR_TIMIN6 MAINTAINS A RECORD OF THE
RADAR„CLOCK_TIME.",

ALPHA ; UPDATE.RADAR.CLOCK
INPUT.INTERFACE : RADAR.CLOCK^IN.

ENABLED 9Y:
INP'JT^INTERFACE: RADAR.CLOCK.IN,

STRUCTURE:
INPUT..INTERFACE : RADAR.CLOCK.IN
ALPHA : UPDATE.RADAR.CLOCK
TERMINATE

END .

E-57

MMÜ
'^^—^"W^^»^» "!■ II ii—>—w ---„-N -***,•■

-■, t.,, * ^ ™'-mmmmmmmmmmmmmmmmmmmmmm»mmmmm«*,i •--- ,'*> -

NET : PFSPOMSE^TO^RAOAW,
OESCWIPTION;

"THT TLS.DPS SHALL IMPLFM^NT THE REOUIREMENTS SPECIFIED
IN THE TLS.RADAR.DPS.INRERFACE.SCECIFICATION ASSOCIATED
I^ITH PROCESSING RADAR SUBSYSTEM RESPONSES TO COMMANDST
ANO SHALL PERFORM THE FUNCTIONS HEREIN DEFINED AND
DlAf-iPAMMEO IN THE RFSPRAl) R^NET.

THF DPS SHALL RECEIVE AND PROCESS RADAR MESSAGES
TRANSMITTED BY THE TLS RAOAR SUBSYSTEM ANO SHALL
INTERROGATF EACH MESSAGE FOR
PROCESS ALL DETECTED MESSAGE

THE DPS SHALL« UPON RECEIPT OF
MESSAGES, DETECT AND PROCESS
GHOST.IMAGES, AND LOW_ELEVAT TON..IMAGES» AND SMALL
UPDATE STATE_PAPAMETERS FOR EACH IMAGE_IN_TRACK.

THE DPS SHALL TERMINATE TRACK ON EACH IMAGE WHICH IS
DETERMINED TO BP EITHER A REDUNPANT OR GHOST IMAGE
OR WHICH IS FOUND' TO EXCEED THE LOW^ELEVATION
CONSTRAINTS AND SHALL MAINTAIN TRACK ON EACH IMAGE
DETERMINED TO 6^ REAL.

THE DPS SHALL CONSTRUCT ANO MAINTAIN DESCRIPTIVE DATA
FILES FOR EACH IMAGE WHICH IS EITHER MAINTAINED IN
TRACK OR DROPPED FROM TRACK AND SHALL PERIOPICALLV
COMMIT THESE DATA TO PERMANENT RECORDS THROUGH THE
DATA RECORDS INTERFACE.".

ERRORS ANO SHALL
ERRORS.
ERROR.FREE RADAR
REDUNDANT.IMAGESt

REFERS TO:
ALPHA
ALPHA
ALPHA
ALPHA
«LPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
DATA
DATA
DATA
DATA
DATA
OATA
EVENT

ACCEPT.ANÜ_CHECK_RAOAR_RETURN.MESSAGE
GHOST.OETERMINATION
GHOST_TERMlNATION
LOW^ELEVATION.nETERMI NATION
LOW.TERMINATION
PEDUN_DETERMlNATION
OEDUN.TERMINATION
RR.ERROR.PPOCESSING
Tl.TP.MEASUREMENT.EXTRACTION
TS^MEASUREMENT^EXTRACTION
UPDATE.STATE
GHOST^IMAGE
LOW.ELEVATION
OADAR.TYPE
PEOUNDANT.IMAGE
RFTURN.IMAGE..STATUS
VALID.RETURN
ALLOCATE

INP'JT.INTEHFACE : RADAR.IN
OUTOUT..INTERFACE : DATA.RECORO.

ABBREVIATED BY:
SYNONfM« RESPHAO.

ENABLED B¥J
INPJT.INTERFACE! RADAR.IN*

TRACED FROM:
ORIGINATING.REOUIHEMENT: OPSPR.3„?.S.C«FUNCTIONAL.

E-58

-s^aiw» -

■ . .. ■ - ■.-... ■ ■ ■
■

•

c

ST^UCTUHt :

AL^HA : ^CCrH f_A(-0_i.h£(^,_KAi)MW_-<t. IUHN^IIKSSAHF

(JO
(lN_f KAC^)

CtmiUtR UATM : KAUAK.TYHt
DU

(T i)
ALt-'iA : 7 ^_ML A^urVt'^r (-(1 _C.A (^«C J lOi^

1)1 -ithV ISt
AL^nA : I 1_ f C. tt AjUnfr Mt: >jr_iA"(-yAC f lOw

tN)
UC

(v"i. ip_i't rjHij)
ALf-HA : UHMA I tr_-.I Alt
00

i)ij l^iJl _1IN. I tHKAC-" : (>Al«^Kh.LOH!)
ANI

ALr'rtA : Kti.'Uw.Jk I>r HMiN«! I') ^1
DO

(wtOUNDANT.,! 1A jt)
«LPUM : WLÜUN_I tHMl\«» I 1 JN
tvi-wi : ^LLur,«rt
OUlHUr.iWlhKFACt : UAlA_KtCOK|)

rt^MlN«ft

AH)I

AL^^IA : LO*_fcLtV/Al lUN_Jt I KKwii^Al lUN
O'J

(LU*l_r-.LF: V FiU1^)
ALHhlA : LOW_TLH^lWA I iUN
tVfNf : ALLuCAIc
OUTHij^iwfLKFACt : JAI A.Kl-tJHÜ

OTHthlnlbt
FtW ^IfgATtr

tNh

((jMti^ r.iMA^t)
ALK.-IA : ljnOSl_1KrtMlNA f iL):^
tVtNl : ALLOC A 1^"
(l'JCf»Ul<.it

,4lr>f ACS : OA I tt_HtCOr(U
Utrn.HMiäf

l>>*MliMA IL
tM'

0-*
(li^OPr-t i>)

OlitHwlbt

trw .

E-59

M
-w— ■wn—WMiiMilllM&i'

■ ■ " t»^**iflwK",ä

..■:'■ ■ ■

9
R
-
NE
^CÄOH. ^ CONSTRUCTS THE 0R0E,E„ „u oF OM. ro.

A FRAME."»
REFERS TOS

ALP«*
ALPHA
DATA
DATA
DATA
DATA

INIT1ALIZE..SKE0_R
PICK.CANDIOATES
LAST«PULSE
MODE
TEOF

UP,.. TRACK_RATE
FNTITY.TYPE S IHAGE.IN.TRACK

EVENT : XRH
F1LP ! CANDIDATE
SUBNET *. FORM.FRAME.

ENABLED aVS
EVENT« SCHEDULE,

TRACED FROM: DECISION: RAOAR.SCHEOULER.PRIORITIZATION.

STRUCTURE»
CONSIDER DATA : MODE

DO
(ENGAGED)

ALPHA : INITIALIZE.SKEDJ*
FOR EACH ENTITY.TYPE : IMA6E.IN.TRACK SUCH THAT
(LAST^PULSE* (I .0/TRACK.RATEXTEOF)
DO ALPHA : PICK.CANDIOATES END

FOR EACH FILE : CANDIDATE
DO SUBNET : FORM.FRAME END

EVENT : XRB
TERMINATE

OTHERWISE
TERMINATE

END
END •

O

O

E-60

»—■———" ?5

W^^^^m

'■■'M&mm^^&v-J^mmsszmw ..■.■.-.>.■..■.■.:..,,.:-,,..;,.-. ■:..^-.,i.^.... ::-.:-:,:r:*.,:-... ..■^.-^■.r:).-;^ • *

i

€

R.NET : XMIT..R.
DESCRIPTION:

"XMIT.R BUILDS AND FORWARDS TO THE Ol'TPUT.INTEPFACt
OA0AR_0UT THE COMMANDS OF THE FRAME.".

REFERS TO:
FORMAT1.T2
FORMATS
PICK.COMMANO

FOUND

ALPHA
ALPHA
ALPHA
DATA ;
DATA I
EVENT
EVENT

PADARJTYPE
SCHEDULE
XR8

OUTPUT_INTERFACE : RADAR_OUT.
ENABLED BY:

EVENT: XRB.
TRACED FROM:

DECISION: RADAR_SCHEDULER_PRI0RIT1"'ATI0N.
STRUCTURE:

ALPHA : PICK.COMMANO
DO

(FOUND)
EVENT : XRB
CONSIDER DATA : RADAR.TYPE
DO

(T3I
ALPHA : FORM.T3

OTHERWISE
ALPHA : F0RM.Tl.T2

END
OUTPUT.INTERFACE : RADAR.OUT

OTHERWISE
EvtNT : SCHbUULt
TERMINATE

END
END .

E-61

::;■;;; «mBnn«^.,., •> n1" rirsmmfmrnr

REFERENCE : CISS_TOP_BASELLNE_CONSTRUCT,
DESCRIPTION:

"TRW REPORT NO, 2294*_977L.RE_01. VOLUME IT REVISION A.
H
.

REFERENCE 5 OPSPP.SPECIFICATION.
DESCRIPTION:

"TRW REPORT NO. 27332„6921_ül5t REVISION 1* CORL AOOEt
SECTION 3.2".

REFERENCE : TLS_C2_DPS.INTERFACE.SPECIFICATION.
DESCRIPTION: "TRW REPORT NO. 27332.6921_013."•

REFERENCE : TLS.ENVIRONMENT^AND.THREAT.MOOEL.
DESCRIPTION:

"GRC REPORT NO. DRC_72-25499 (SECRET). VERSION I.".

REFERENCE : TLS_RAOAR_OPS_INTERFACE.SPtCIFICATION.
DESCRIPTION: "TRW REPORT NO. 27332.6921.012.".
EXPLAINS:

INPUT.JNTERFACE: RADAR.CLOCK.IN
INPUT.INTERFACE: RAOAR.IN
MESSAGE: T1_T2.C0MMAN0
MESSAGE: T1.T2_RETURN
MESSAGE: T3_COMMAND
MESSAGE: T3.RETURN
OUTPUT.INTERFACE*. RAPAR.OUT.

REFERENCE : TLS_RADAR.PERFORMANCE.SPEC.
DESCRIPTION: "GRC REPORT NO. CR_3.386 (SECRET)".

REFERENCE : TLS.SYSTEM.REO'JIREMENTS.

»TRW REPORT NO. 27332.6921.015. REVISION 1. CDRL AOOE
SECTION 1.1".

H

\tair

E-62

■HRMMMMMMIN

"***'"''' ' ^ *mmmmmmmmmmi£-:tmmmmmmimm* - ■ .-■.-,.««w!«iawB«»fi»»«.-*^^^ ./..■vVi.,iM,v:u;-'V'.w.*.;j,!;"\)-iI:-f7f:i!;«:,t :;:.■,*■:■■ •■v,-?' -v;:-*- "-f:

i
•FÜKM.FHA^fc. KMUVlUtb WAüArt CJNFLlCI WEbOLÜTION.«,

Kf r-^S Tü:

ALHHA ! FI'>iÜ_CON»-LiCI

i)AT*i : l)H(JP_FLAl7,
fythtR-tü r»Y:

bTKUrTJHf:
ALHMA ; r INU_LUNI-L1CI
DO

(NO I UKuH.r LA'i)
AL^HM : H^t _CUi't>iAi<(l

K»: T'JKN

:#

t

E-63

.%;
ta^^

'— i ■s^J»^ ■—-'•'—I fw -*?——w^ HlHHi *"'

■ ^v-;^.^:

SUBSYSTEM ! SSC2.
CONNPCTEO TO!

INOJT.INTERFACE: CC_!N
r»UTPUT_TNTEPFACE: CC.OUT,

SUBSYSTEM : SSPEPMFL.
CONNFCTEO TO:

OUTPUT.INTERFACE: OATA.RECOHO.

SUBSYSTEM ! SSRADAP.
CONNECTEO TO:

INPUT_IMTE»FACE: PADAR_CLOCK_IN
INPJT_INTERFACE: RA0AP_IN
OUTPUT_INTERF,»CE: RADAR.OUT.

1

I

I

t
E-64

i
wfum im m 'tMn^^rm,:

■:!■ ■■•-■.■-'■■■:-:--<Xy.'-----' ' ■■ ■ ■--,.. ;■/---..,», ,.a.:„;„-,frJ.,W.:. .,;;.,;,-;,„ -,„l~:,r,- .,-.■:.... '-^r^'t .ii». ^, - ■■■•W'

l

SYNONYM : CKRADHES.
EQUATES TO:

ALPHA t ACCEPT^ND.CHECK.RADAR.RETURN.MESSAGE•

SYNONYM : CONTRES,,
ABBREVIATES:

R.NET: CONTROL.RESOURCES.

SYNONYM : RAOIN,
ABBREVIATESt

INPUT.INTFRFACE: RAOAR.IN.

SYNONYM : RAOOUT.
ABBREVIATES:

OUTPUT.INTERFACE: RAOAR.OUT,

SYNONYM : RESPRAO,
ABBREVIATES:

R.NET: RESPONSE.TO.RAOAR.

SYNONYM : T1T2CMO.
EQUATES TOt

MESSAGE: T1.T2.COMMANO.

SYNONYM : TIT2RTN,
EQUATES TO:

MESSAGE: T1_T2_RETURN,

SYNONYM : T3CMO.
EQUATES TO:

MESSAGEi T3.C0MHAN0.

SYNONYM : T3RTN.
EQUATES TO:

MESSAGE: T3.RETURN.

t
^-65

mm mm BBI—mw mnfm' ''. wmny -«^— -——■--

VFRSION : ORIGINAL.PUBLICATION.OATEO.AUGUST.IMTS,
IMPLEMENTED BY:

INPJT^lNTERFACc: PADAR.IN
0UToUT.INTERFACE« RAOAR.OUT.

O

9

o
E-66

»^P»—>.i<l«"J-"». *■«» '»' liMII.WUMiMpi.

rr
■r-v •■ ■«vvv^^

-.„,>.,,..,.,,,,,;, :.-,,,.,.,.. ,,■!.,,,-„,,.,... .„,,.„,..:,»,..,,„ i.^..„i ,,: ■:,-,:.,:■:,,,_■-: :

APPENDIX F

TLS SOURCE SPECIFICATIONS

F-l

ir o ri 'i iiininri ma^iwii ^.H.-.-«*-- mmm

i

APPENDIX F-I: TRACK LOOP DPSPR

■»«^"■«««"-^-•-»iMr i

»iÄ

I. INTRODUCTION

t

1.0 PURPOSE AND SCOPE

This report presents the preliminary Data Processing Subsystem Per-

formance Requirements (DPSPR) for the Track Loop Experiment (X-l). The

goals for this experiment are presented in Section 2.0.

The primary intent of this document is to provide the initiating

input to the Software Requirements Engineering Methodology which will sub-

sequently produce a Process Performance Requirements (PPR) specification

for the Track Loop System Data Processing Subsystem. It is further the

intent of this document to present an example of the required contents and

level of detail of a DPSPR discussed in Reference 1. As such, this example

will provide a more concrete basis for technical exchange between the Soft-

ware Requirements Engineering, DPSPR and V&V contractors. Such interchange is

considered necessary to arrive at a final definition of the required form,

contents and format of a DPSPR. Part II of this report constitutes the

example DPSPR.

1.1 The Track Loop System

The Track Loop System (TLS) is a subset of a Preliminary Billistic

Missile Defense System which is capable of nearly autonomous execution

in response to external stimuli. It is the simplest known subsystem with

properties of interest for software definition, and it is one which has

been studied extensively, both in the academic literature and in such

practical programs as Site Defense. Therefore, it has been selected as

the testbed for supporting experimentation in development of the methodology

for software requirements. A pictorial representation of the TLS is provided

in Figure F-l.

1.1.1 Preliminary Ballistic Missile Defense System

A Preliminary Ballistic Missile Defense System (PUMüS) has been

postulated as an environment in which the TLS would execute. It Is a

generalized representative of the class of systems currently in develop-

ment, and is particularized for the TLS through representative but non-

real specifications where required.

«Mt!* i m a,!,, in, im

MwwywWi —wv *£**itog*qffmli0mto
 JL

gj|IKMjll||Wa?Mff$W^^''#^lllii»fli|^^

■'''■■■. -

Flgurt F-l Track Loop Systwi

F-6

If -""»j .|.. mm wm

0

' F. mm ' •*mm 'W"1-1*»!
■i*1 ' ■'■- r^ HI ' •

■ ■■■ ■ ■ ■ ■ ■ .■ 'Wim^'^mmfm^.^i.^:-:.. ^*.-.■.^'A^-s^^.1fl^^*-«2^'^^r»?<©_^ -'■ m ^■-^■■■.;^■$.-■■ ■:-::■? - .,.-::.~-^:;- ^■■.■.«.-:*t., ,■■.'■■-■ ■■■

•

(

%

The top level flow of the PBHDS is shown in the functional flow block

diagram, Figure F-2. In the Conduct Engagement mode, an object entering the

search region will be detected and designated, tracked, discriminated, and

engaged (as required) in defense of the ground facilities. Those functions

are implemented through the Data Processing System (DPS), a radar or other

sensor, and a means of neutralizing hostile objects. For the purpose of

the TLS, only the radar need be defined in detail; other system elements

are identified only to the extent that they impact DPS requirements.

1.1.2 TLS Requirements

Functional Requirements on the TLS would normally be contained in a

system specification (Level 1, or A in MIL STD 490 terminology). If soft-

ware is developed from the requirements provided in Section II of this

report, and if that software is to be installed and exercised in the field,

then such a system specification may be required. In the interests of

both economy and timeliness, only the subsection of the A Specification

required for the DPSFR is provided nere.

1.1.2.1 Initialization

The TLS shall accept C2 messages for initialization with the following
properties:

a) An estimate of state shall be generated external to TLS and for-
warded to TLS over the communication channel to initiate tracking.

b) If an object corresponds to that estimate, the estimation accuracy
shall be such that the expected (1-sigma) deviation of tne object
from a perfect extrapolation of state shall be in accord with
Table F.l.

c) Initialization estimates shall be provided (handed off) at a rate not
exceeding 150 per second over any interval greater than 50 milli-
seconds .

d) The total number of handoffs shall not exceed 1500.

e) The total number of real objects shall not exceed 300.

f) A handoff may be an estimate on a real object or an estimate relating
to a state at which no object is located (ghost). Multiple handoffs
of a single object may be generated.

g) Each handoff shall consist of a unique designator, the state vector
and Its covariance matrix.

F-7

iinmiimiimwIMIMI

<tfC 1^''
JL,>-—'

y
LI
if!

r-8

i
i

hi
•UK*

i sil I m
II
if

i

Pi
i sis

F

o

i

1 1

I

o

'Mi

~~U-

■■.:■. «tlSIMs»?*«*!»1«^^ >■■:;¥■-'■ ;.■■:■ ■■■■■■■.■■■< ■

Table F.2 Table F.l Handover Errors In Radar Face Coordinates

■m

COORDINATE MINIMUM

3

MAXIMUM UHITS

R 5 M

U 0.4 0.6 mslne

V 0.03 0.05 msine
•
R 40 55 m/sec
•

2 4 mslne/sec
•
V 2 4 msine/sec

r.

t NOTES:

1. All data l-o

2. Handover altitude L 65 K meters

i
F-9

^|BIWWI«*<<|IIW*^M»**,ll'l'';'*»J11111'1'1"'' ~'VI'**---

■■
■

■

1.1.2.2 Termination

a) Redundant images of objects shall be dropped from track in order to
conserve radar resources. The probability of dropping track on a
non-redundant image shall be considered in determining leakage.

b) Ghosts shall be dropped from track in order to conserve radar
resources. The probability that a non-redundant image is dropped
as a ghost shall be considered in determining leakage.

c) For flight safety, no track pulse shall be commanded with true elevation
angle less than 3°.

d) Track shall be dropped in response to an external cotninand repre-
senting handoff to another defense facility or successful intercept.
No track pulse shall be transmitted to a designated image more than
100 milliseconds after such a command appears at the TLS port, with
probability .3.

1.1.2.3 Tracking

a) The TLS shall generate state estimates sufficient to support discrimi-
nation through beta estimation accuracy in accordance with Figure F-3
and impact point prediction in accordance with Figure F-4.

Beta is required in the system for a variety of purposes at different
stages in the er.cjagmcnt of en ohceot. Early in track, it is used
for junk rcjeation; at an intermediate state, it forms a key
element of discrimination in elimination of decoys and assessment
of the danger imposed by an RV; shortly thereafter, it is essential
to intercept planning in estimating the intercept point. The needs
overlap in practice, so that a cormon ordinate for the plot of
accuracy requirements is needed. But each of the aspects of use of
beta dictates a different ordinate at the system level. The ordinate
»elected in Figure F-3 is time in track, a parameter known to be
useful to the Software Requirements Engineer, and as useful for
the systems-level definition as any of the other choices.

Similarly, impact point prediction is used initially to reject cross
traffic, then to assess the threat posed by an RV; in some schema,
it also assists discrimination. The first might be expressed by the
system engineer in terms of accuracy against track energy; the
second in terms of time to commit contour (which is in turn a
function of RV type, intercept capabilities, and other parameters).
Again, time in track was chosen as a convenient ordinate for the
error requirements in Figure F-4.

b) The TLS shall generate state estimates sufficient to support object
intercept in accordance with Figure (TBD).

c) Leakage Is here defined to be the probability that all Images of
a real object entered at an altitude not less than 150K feet are
dropped from track for any reason other than the nilnimum-elevetlon
constraints or external command defined In 1.1.2.2. Leakage in
TLS shall not exceed .03.

F-10

%Jf

f

'mmm
mme**m

■fe.iivr^vi; '.■■■■.■:.-■ii,.s;r-,,^
■ ■ ,

t

IL

.5H

«ß/a
.4H

.3^

.2H

.1 -

i —r-
l.o

■ ■ ■ ■. i

6ß/ß , |(TRUE-ESTIMATED)

Upper bound of allowed 6ß/»J

2.0
—i—
3.0 4.0 5.0

Tine In Track (sec)

Figure F-3 Beta Error Requirements

F-ll

.j ^

—r-
6.0

I

Impact
Point
Uncertainty

(km)
8.0-

7.0.

6.0-

5.0-

4.0-

3.0-

2.0-

1.0-

Upper bound of C.E.P.
of Impact Point

—i \ 1 1 1 i

1.0 2.0 3.0 4.0 5.0 6.0

Tim In Track (sec)

Figure F-4 Impact Point Error Requirements

F-12

■■■:■--, :>,-■■■■■-;■ ■■.:■■ .=vv---.;.Vs>^i';,..--:^ /^■'./..A^y^w^--^.;:,.-,.,.^.,,,-.-..-.!^ «^saHr^J^^^^^^^Hi .

1.1.2.4 Resource Control

1

a) The TLS shall conrrit to tracking functions not more than 1800 radar
pulses per second, using not more than 25 kilowatts ERP.

b) The TLS shall commit to tracking functions not more than 2500 joules
per object.*

1.1.2.5 Data Recording

The TLS shall provide records for post test analysis of the following
data:

a) Time of hdndoff and designator and estimate received.

b) Time of termination of track on each designation with reason
for termination.

c) At intervals not greater than 100 milliseconds, the estimate of
state for each designation received and not yet terminated.
That estimate shall consist of the following data: position,
velocity, a beta estimation parameter and estimates of the
uncertainty of each.

d) At Intervals not greater than 300 milliseconds, the usage of
radar resources. That measure snail include: radar energy profile
and DPS estimates of expected and maximum energy commanded.

t
F-13

-;,'—"""

2.0 SREP OBJECTIVES FOR X-l

a) Demonstrate the scope, contents and level of detail of the DPSPR,
described in Reference 1, and transmit the results to the DPSPR
contractors for their evaluation.

b) Demonstrate the scope, contents, format, and level of detail of
PPR Volume I specified in Reference 2. The PPR will be written
In preliminary RSL (see Reference 4). In particular:

1) Evaluate the format of the PPR described 1n Reference 2 for
completeness and adequacy.

2) Evaluate the adequacy of the preliminary RSL definition for
stating requirements.

3} Provide the PPK for evaluation; in particular, the form and
content of the performance requirements.

4) Evaluate the extent of the traceability of the PPR to the
DPSPR.

c) Evaluate the steps of SREM (see Reference 3) from the DPSPR to a
PPR; in particular, the procedural steps, form, and content of the
performance allocation activities.

d) Exercise the available experimental software to generate portions
of the PPR (e.g., the structure segment of RSL).

w

F-14

, j^pMManvHHp

mm
"'.II -*T^ tmii ■y'-s^_^ *"M>ii iiiuiiii i —i n -. ■ „^ , - , ■^.. ■ Bsgaa^wwpPji

"://s*fl:'*K..ft-. f^mmmmmiimmmmmm^pmm*
■■ - ■■

■■ - . . . ■ :■ ■ ■ ■ ' ■ .

3.0 LIMITATIONS

Two primary forces limit the application of the DPSPR of Section II.

The first is the result of excising the track loop from the total PBMÜS.

Although the loop is nearly self-contained, it has extensive interfaces

both in terms of requirements and in the sense of implementation with other

software functions. Consequently, requirements are imposed on TLS which

originate or terminate within the DPS in ways and to an extent not believed

appropriate for a true, functional system.

The second major area of limitation arises from the novelty of the

approach. While the methodology employed is believed valid, it has not

yet been tried. (In fact, this experiment is its trial.) Consequently,

It is likely that this initial DPSPR wiil be found to be incomplete in some

materials needed for the PPR and for software development. Every effort has

been made to anticipate such failings, but we anticipate methodologic bugs

In the same way we would expect to find bugs in a new compiler or t»th»?r

rr.ajor software development.

3.1 System Objectives

Isolation of TLS from PBMDS was artificial, and the objectives of

Section 1.1 are correspondingly less than real. The selection of thos«?

objectives was based on simplicity of implementation, expected usefulness

of the TLS as a testbed, and availability of comparison criteria. Since

no DPSPR had ever been prepared before, it was not possible to select

criteria to optimize its quality. The objectives provided are believed

to be good for generation of the DPSPR, but cannot be shown to be optimal.

3.2 Allocation to DP

Again, the absence of precedent and the artificiality of the TLS make

an "optimum" allocation of functions unreasonable. A complete allocation

Is provided, which is believed to be sufficient for the experiment.

3.3 Level of Detail

The objective of the DPSPR of Part II Is to provide the complete
specification required for the PPR Feasibility Demonstration. It is likely

F-15

■

.. _ _. ,„, ,.,...-..„„■«»....,,■,.-.• ' -■ ■ -■,■„. ,fv.-^-- ..••

that some of the material will prove to be unnecessary; It is certain that

not all data presently missing will be required before Initiating work on

Volume I of the PkR. Therefore, revisions are planned both to complete

specification of the requirements and to delete data found to be non-essential

3.4 FormuUtion of DP Requirements

The X-l DPSPR defines some data in a form and to a depth we feel to be

undesirable. In particular, efforts are now under way to express require-

ments on Redundant Track Elimination in terms of total radar energy per

object. Converting both redundant tracking and other explicit requirements

to a derivable form will te an objective for revisions of the DPSPR.

0

3.5 rftrnllary Documents

The DPSPR is on. docu^nt in . family required to develop the Process

Perfomence Requ1r«nents (PPR). For the TLS. the other documents a«:

TLS System Requirements
TLS Radar/DPS Interface Specification

TLS C2/DPS Interface Specification

„TLS Radar Performance Specification* ^

TLS Environment and Threat Model Definition.

§

The system requirements are sketched in Section 1.1 above. The starred (*) docu-

ments In this family are not yet prepared.

For the purposes of development of the PPR, the absence of the docu-

ments Is believed to be less than critical. For the X-l effort, the contents

of the missing specifications are subsets of the corresponding Terminal

Defense Program (TDP) documents. Therefore, the required information for

the PPR Is avail«ible from TDP documentation. However, a property of the

methodology is its recognition that not all specifications ultimately required

to support software design will be available early in that design effort.

To the extent that the TLS documentation corresponding to initiation of a

PPR Is required, the TDP documents are excessive. Thus, there Is an effort

required as a part of the ongoing work to edit the TDP material to the

specific, appropriate contents for the stage of development represented by

the DPSPR. That work Is under way on the Radar/DPS Interface spedfication,

ano will soon be undertaken on the other elements of the DPSPR package.

F-16

■■" : ■■'■■■■ ■■ ■ ■■■■ . ■■ ■ • • ■ ■ I ■■■- ■ ■ i . ■ ■ ■ -

■:

•

4.0 REFERENCES

1. TRW Report 27332-6921-003, "Software Performance Requirements - DPSPR
Content Requirements", (CDRL A004), Revision 1, December 12, 1975.

2. TRW Report 27332-6921-004, "Software Performance Requirements - PPR
Content Requirements", (CDRL A005), Revision 1, December 12, 1975.

3. TRW Report 27332-6921-005, "Software Requirements Engineering
Methodology Description Special Report", (CDRL AOOC), ilev^lon 1.
December 12, 1975.

•
4. TRW IOC TEB-75-6000.02-135, "Requirements Statement Language Descrip-

tions", 1 May 1975.

F-17

iMMMWig^M ' "■■" ■■■" wmsmmtrntmum »^*m*-mismmmm

II. DATA PROCESSING SUBSYSTEM
PERFORMANCE REQUIREMENTS - TRACK LOOP SYSTEM

1.0 SCOPE

This specification establishes the functional, performance, design

and test requirements for the Track Loop System (TLS) to the extent

necessary to develop the Process Performance Requirements (PPR) for the

Data Processing Subsystem (DPS) portion of the system. The TLS is a test

configuration of an Integral element of a Preliminary Ballistic Missile

Defense System (PBMOS).

The primary objective of this specification is to constrain the DPS

so that it fulfills the intended obligations to the functions and perfor-

mance of the overall TLS of which it is a part. To accomplish this, this

specification

• identifies the TLS mission and performance goals.

• identifies the various subsystems, their functional capa-
bilities, and the interfaces between the Data Processing
Subsystem and each of the others.

• allocates a portion of the system performance to the
Data Processing Subsystem.

• describes the system operational design. I.e., how the
subsystems are to be used in order to achieve the system
performance goals by utilization of the subsystem capa-
bilities.

This specification provides the technical basis for the development of the

DPS» but is not a TLS system specification.

C

F-19

2.0 APPLICABLE DOCUMENTS

2.1 DPSPR Content Requirements. TRW Report 27332-6921-003, (CDRL A004),
Revision 1, December 12, 1975.

2.2 TLS System Requirements. (Part I, Section 1.1 of this report).

2.3 TLS Radar/DPS Interface Specification TR',4 Report No. 27332-6921-012

2.4 TLS C2/DPS interface Specification TRW Report No. 27332-6921-013

2.5 TLS Radar Performance Specification

2.6 TLS Environment and Threat Model Definition

1

F-20

$H —»"•»M»!"» ■■!"<•»"■

■
■ ■ ■ ■ ■

!«ff^^^.^^^,>o'!.:■■;;^.f;^:-^.:^^.^.:^■,■■■^^|■^■■!''-

3.0 DATA PROCtSSING SUBSYSTEM

The TLS is defined in [2.2] (Part I, Section 1.1 of this report).

Section 1.1.2 provides the system requirements, while Figure F-l represents

the operation of the system. TLS consists of a radar and a data processor,

and receives input data from radar echoes and from interface with the C

system. A model of the system environment is to be provided as [2.6].

Within the TLS, the radar-data processor interface specification is to be

[2.4], while the C2/DPS interface will be defined in [2.3]. The radar models

will be in [2.5].

The TLS DPS has been allocated requirements from those establisned on

the TLS as a whole. The resulting requirements on the DPS are defined in

Section 3.2 of this DPSPR. Traceability of the DPSPR requirements to the

TLS requirements is shown in Figure F-6. All TLS requirements not allocated

to the DPS are satisfied by the radar. Quantitative verification of the

sufficiency of the allocation will be undertaken in the preparation of the

PPR.

3.1 Traceability

Figure F-6 Is the traceability matrix for this DPSPR, and Illustrates

the relationship between the TLS requirements [2.2], and the DPS requirements

of Section 3.2. It also depicts the allocation of portions of system require-

, ments to the radar; not all of that allocation Is clearly visible in the

Interface specification, some of It being located in [2.5].

The funotion of the traceability matrix ie twofold: to locate the 8ub~

eyetem requirements derived from each syatem requirement, and to faoilitats

. recognition that each DPS requirement originates from an appropriate eourae.

The firot function is insurance that the DPSPP (md its counterparts for other

euboystems) are sufficient tc embody the eyetem requirements, while the second

verifies that no gratuitous requirements nave been introduced.

To determine the source (s) of a DPS requirement, the appropriate row is

located in the left-hand coliom. Reading across the row, an entry of "C"

indicates that virtually complete satisfaction of the system requirement fo?

that column is provided, A :'P" indicates that a portion of the system require-

ment is there satisfied. Scanning the entire chartt one finds t}iat the DPS

F-21

^ rWOM I ■ i ■■■■i» KI ,«

.•■.....,..•
■ : ■■■.■■■■-■■:■■■■;■■■■.:■.,., ■ ■ ,

in "" •
"""

«*■
a. a. a.

ro a. a.

tNJ o

• r» o

r
XI a. a. a. a. a. a.

<a a. a. a. a. a. o.

u . a. a. o. a. a.

jQ a. o. a. o. a.

• 10 a. a. n. a. a.

0) o

u

a.

u

o a. a.

a.

CM • n a. a.

a» o

«f- o

w o

■o o

u o »

A o

• 10 o

PA
RT

I

1
.1

.2

/

« A U TJ 0i •a Xi U "O M t^ ot 10 X) f— CM fO V

V IPAR
T

3.
2 • • • • •

1

§

K

J3

s

f

V

o
F-22

Bl ^g^».--^^.gi«»|WW'-^W,l'^*'niWI|^*Ji*yi'»,.iiii 'I ■«■ ^J ^ „x.

?w^ - - *,
■■■■■■■: ■ ■ ■ .■ . .

■ . : :■ ■ ...
...... ■-.. ■ , . . ■ .■

t

I

9

requirement to satisfy the interface specification is not traceable to the

system requirements; however, it is clearly required, and is clearly in-

appropriate for the system specification.

Determining the impact of a system requirement on the subsystems is

constructive both in confirming that every requirement is covered and in

tracking the consequences of a change to the system specification. Reading

a aoluim will show the partial (P) or complete (C) satisfaction of a system

requirement in the corresponding DPSPR section. In the present case, each

system requirement has some DPS impact; that might not be true in general.

For example, if a hard stop on elevation angle were implemented in the inzdar,

then the third requirement wider 3.2.2 vould be deleted, and the inqilementa-

Hon of the third requirement of (Part 1} 1.1.2.2 would be virtually completely

contained in the radar subsystem.

3.2 Data Processing Subsystem Requirements

Many of the following specific requirements are stated in terms of a

value and a probability of its satisfaction. In each such case, the inter-

pretation shall be that at every point in the engagement, the probability of

satisfying the inequality shall be at least the stated value. The required

confidence in that assertion is established in test planning.

3.2.1 Initialization

a) The DPS shall accept commands from the C2 to initiate track on a
designated object. A radar order in response to such a command
shall be provided at the radar interface for transmission within
55 milliseconds of the comiiiand with probability .9. These conmands
are defined in Reference ZA [TLS C2/DPS Interface Specification].

b) Capacities. The UPS shall be able to accept handoffs at a rate
of 150 per second over any interval greater than 50 milliseconds,
and a total of 1500 handoffs per engagement, of which up to 300
will be real Images.

3.2.2 Termination

a) The DPS shall command not more than 15 pulses to a redundant image
with probability .7, nor more than 50 with probability .99.

F-23

•sr -<Bßr

■
■ ■ ■ ■ ' ■■ ■■.■■-■■

■■■■■■•■

b) The DPS shall command not more than seven pulses to a ghost with
probability .7.

c) The DPS shall command no track pulse with elevation angle less than
3°.

d) The DPS shall command no track pulse to an image of an object which
has achieved an elevation of less than 5°, or which will attain
such an elevation by the time of transmission, with probability .9.

e) For an image on which a drop-track command is received, the DPS
shall command.no transmission with execution time more than 100
milliseconds after appearance of the ordor at the c2 interface
with probability .7, nor more than 300 milliseconds with probability
.99.

i

3.?.3 Tracking

a)

b)

The DPS shall maintain an estimate of state for each image in track.
Defining the true state of an Image by Attachment A, estimated
state shall deviate from true state by not more than the tolerance
of Figure F-7 (TB1"') with the probabilities of that Figure, where
the assessment is relative to the time of the last processed return.

The probability that all images of an object shall be dropped as
redundant shall not exceed .01.

c) The probability that any image of an object shall be dropped as
a ghost shall not exceed .2.

d) The DPS shall command track pulses at a rate sufficient to keep th«
propagated error defined by Attachment B less than the tolerances
of Figure F-8 (TBD) with probabilities defined in that Figure.

e) The DPS shall proyide orders to the radar in accordance with the
Interface specification. The relevant fields, timing, etc., are
defined in [2.3]. In particular, the DPS shall select waveforms,
frequencies, beamwidtha and related parameters in accordance with
radar constraints in order to satisfy TLS performance requirements.

f) The DPS shall accept radar returns In accordance with the Interface
Specification [2.3].

g) The DPS shall maintain track on each image until one of the following
conditions is satisfied:

1) Drop Track command received,

2) Image determined to be redundant,

3) Image determined to be a ghost, or

4) Estimated elevation of object or of image expected to violate
elevation-angle constraint before next assessment.

F-24

'**..,.miif»mm* «ww ■»'■' vm^m%r'*fi-

itmim ■!

■■■■■:

■.■...
■ ■ -■

1 ^(

I

1

:%>

3.2.4 Resource Control

a) The DPS shall maintain an estimate of radar energy scheduled by
track functions which shall be within three percent of the energy
nominally expended, and an upper-bound estimate such that the
actual ERP and total radiateci energy do not exceed the bound with
probability (T8D).

b) The DPS shall allocate radar commands so that not more than (TBD)
joules are commanded per imagp nor more than (TBD) kilowatts or (TBD)
pulses/second for all images in track.

3.2.5 Data Recording

The DPS shall output to permanent file the following data:

a) Time of handoff and designation and estimate provided«

b) Time of termination of track on etch designation with reason
for termination. The reason shall be one of the following.

1) Drop Track Command
2) Minimum Elevation
3) Image Declared Redundant
4) Image Declared Ghost.

c) Subsequent to each state update, the resulting estimate ttf
state on that image. Contents of that estimate are TBD.

d) At Intervals not greater than 300 milliseconds the usage of
radar resources. That estimate shall include the nominal
and upper bounds defined in 3.2.4, and TBD additional data.

F-25

■WWUlM^-SS^^in ■ .'■--rr--1 ■>'<

'K^m^ffi-:^::^ - ■^^- — --,-^—ry-^'H:---', --.;■. ■^>*n!W^fe^^ V'-;

I"

4.0 GLOSSARY

State Vector: A set of data pertaining to a specified image defining its

location in space and permitting extrapolation of its location to

other times. The contents of the state vector may vary with different

applications; ir particular, the coordinate system employed Is dependent

on the use to which it will be put. A conventional state vector in

RFCC is: R, U. V, R, U, V, g , and the time to which all are

referenced.

Object; A physical entity external to the DPS with radar reflection properties

corresponding to a reentry vehicle of the defined threat.

Image: A target defined to the TLS DPS for tracking and categorization as the

image to be tracked, a redundant image, or a ghost.

•

Ghost: An irage with which no object is correlated.

Redundant Image: An image which correlates with both an object and another

image. Of the set of redundant Images of an object, one is intended to

be retained in track while the others are categorized as redundant

and dropped.

Handoff: The receipt by the TLS DPS of a valid order to initiate track on

an image.

Track Termination: The receipt by the TLS DPS of a valid order to Drop

Track, or the determination by the DPS that tracking should be terminated.

1

F-26

■ ■ ■■'■iWimferym-'^i^-ffc^.v,..-, ^.^...^-jv^^.^,. if,T,.
■ ■ ■:■.■■■ ; .- ■ , . :..■■■.. r; ?%9teSeW«iEiSe!iff«^aWJ»»l!^^ S*^ s*.

ATTACHMENT A

STATE VECTOR PREDICTION

The filter maintains the state vector in the RFCC system at all times.

Specific details of the equations of motion and the method of trajectory

integration employed for state vector prediction in the RFCC system are

presented in this section. Figure A-l defines the RFCC system.

1.1 Equations of Motion

In the general formulation of the equations of motion, it is assumed

that all vector variables appearing in the differential equations are

appropriately referenced to the RFCC system associated with the face of a

given radar under consideration. Explicit expressions for the transformed

variables are given whenever they first appear.

Let the RFCC position vector to a target, denoted r^, have Cartesian

components X~, Y£ and Z*. The differential equations describing the

motion of a target in the rotating RFCC system may, in general, ritten

as

- vKt . aaii? i ~
\\\l (A.l)

- 2 uf x rf - uf x (ü)f x Rf)

and assuming constant X model

where

u ■ ÖM
G ■ universal gravitational constant
M « mass of the earth

ft- is the vector from the geocenter to the target

p is the atmospheric density which is a function
of the altitude h

g ■ earth's sea level gravity
X is the inverse of the ballistic coefficient

F-27

I—I it,^it0mm^mm^m»fmmip~mmqiffiiiemm' ■ ...,.»--—yfr-
.

■ ■ ■

*

Perpendicular
to x and z

zontal
array)

u • x " cot a
r

v « ^ - co$ t
r

Figure A-l Radar Face Centered Coordinates

F-28

:-x::

" * t',mim '■™riin*wm!**JwamKiimmrimir>*i>*** mmma^sitMtm« fmmmmitmmimmmmmmmmm^aT>tm^mfm^9»i'tii>a!ti»' «^ -i -' i

•

r* is the velocity vector of the target

x is the vector cross-product

üjf earth's angular rotation rate, a vector
quantity resolved along an earth-centered
Cartesian coordinate system aligned with the
RFCC system.

Define R * as the vector from the geocenter to the radar site expressed

in the RFCC system. Then

vf sf (A. 2)

where the vector R , is given by

sf R„ Cos E
c

II Sin E
■ o.

(A.3)

f

:■■,■ ■ m

and E is the elevation angle of the radar boresight with respect to the
local horizon plant.

The earth rotates about the polar axis with a constant angular

Ity w . The compor

RFCC system is given by

velocity w . The components of the earth's angular velocity vector in the

u.

w.

O),

w.

'*) Sin A Cos ((>
e T

J (Cos E Sin >> - Sin E Cos A Cos <{>)

we(Cos A Cos E Cos * + Sin E Sin <(>)

(A.4)

where A is the azimuth of the radar boresight with respect to the radar

centered horizon coordinate system and * is the geocentric latitude of the

radar site.

1.2 Trajectory Integration

The trajectory integration involved in th« prediction of the state

vector will be performed by a second-order Taylor's series expansion in

Atn ■ t^ - tn for the position vector rf which gives

F-29

n "~**~ i i—■*"" 'n "" i mm • i;.^. i»
•.«-«»»w«»,<*MSWasniiiB;,i: i

>»»wws»iMaMiWiiiM^ -'•m""'"^^:-y:f-^'^:- ■!'-.

'^n+J " W + ?f<tn)Atn + 1/2 'f<fcn)A^ (A.5)

and consequently, the velocity vector Is given by

VW - 'f<g + ?f«V^n (A.6)

and

x<w - ^g (A. 7)

where rf(tn) is readily evaluated from Eq. (1.1) by using the current
estimate of the state vector at t . n

1

F-30

mmam

r
^Ww'r*^w$m&w9mmt&* ■ — . ■ ■ . ■ ■ ■ ..■■■ ■■-:..,

t ATTACHMENT B

PROPAGATION OF ERRORS

€

Ignoring the process noise, the propagation of the state error covariance
matrix from cycle to cycle is computed by

,, P(n+l/n) - *(n+l,u) P(n) *T(n+l,n) (B.l)

in which «(n+Ln) is the state transition matrix expressed in terms of the
appropriate filter coordinate system (RVCC).

The derivation of the * matrix starts with the first order Taylor's
expansion of a set of nonlinear differential equations describing the target
motion about some nominal solution of the state. For this specific develop-
ment, the target motion Eq. (A.l) is approximated by

i ..PJL* |r I ^ rf 2 irf| Ti (B.2)

that is, all other accelerating forces except that due to the atmospheric
drag are Ignored.

The decoupled in-plane and out-of-plane transition matrices * and
♦ in the RVCC system are given by

1 0 A n 0 0

0 1 0 A n 0

♦ (n+l,n) -
P

0 0 I 0 -DZ.A
1 n

0 0 0 1 -DLftn

J) 0 0 0 31

~1 A~
n

•
n

(n+l .n) -
JS 1

(B.3)

(B.4)

1-^-^.

F-31

.M. J

APPENDIX F-II: RADAR/DPS INTERFACE SPECIFICATION

1.0 SCOPE

c

This specification defines the physical and functional interface between
the Radar and the Data Processing Subsystem (DPS) of the Track Loop System (TL5).
The TLS itself is a testbed derived from a Preliminary Ballistic Missile Defense
System (PBMDS), which is in turn a representative but unreal environment for
these studies. TLS is intended to have development and test capability,
although realization of that capacity in actual testing is not no,-/ contemplated.

This apecifiaation aorreeponds to one which would he available prior
to preparation of a PPR. To that endt its contents have been extracted from
TDP doowientation. Reference is made to that material ao the source from
which data here labelled "TBS" and "TBD" will be derived. In this publication
"TBS" ie used to identify material expected to be required during early stages
of PPR preparation, while "TBD" denotes material which may be supplied later in
thu synaification process. Material present cd in italics ^ such as this
paragraph, is illustrative or informative in nature, and would not noimally
appear.in such a specification.

Some of the paragraphs in this Interface Specification place constraints
or requirements on the DPS; these have been identified by a * in front of that
paragraph.

,,5

r

2.0 APPLICABLE DOCUMENTS
()

2.1 TLS SYSTEM REQUIREMENTS 27332-6921-011. PART I, SECTION 1.1

2.2 TLS DATA PROCESSING SUBSYSTEM PERFORMANCE REQUIREMENTS (DPSPR) 27332-

6921-011, PART II

2.3 TLS RADAR PERFORMANCE SPECIFICATION

2.4 TLS ENVIRONMENT ANÜ THREAT MODEL DEFINITION

1

0
F-36

•• %
,*--* f

""^mmrn

PRS!

o ■.■■■• ■■■■■- . , ^ ^-^g^. jBtaiftiiMijaftitjj, .„-j,.^,^,«.,,««' W:-,i,-w.:--":W^:.J^^r; ■

^ ■*>*

3.0 INTERFACE REQUIREMENTS

3.1 PHYSICAL INTERFACE

TBD

The physical interface ie highly dependent on hardware selection for

both the DPS and the Radar; in general» it will be irrelevant to the speci-

fication process through the Preliminary Design Review. Some portions of

the physical interface may be specified during PPR, notably those relating

to timing of signals and clock protocol,

3.2 FUNCTIONAL INTERFACE

The functional Interface between the DP and the Radar shall consist of:

• Commands Issued by the UP to the Radar

• Returns Issued by the Radar to the DP

• Engagement Clock Issued by the Radar to the DP

3.2.1 Radar Command Generation

.a. The Radar will execute only the conmands Issued by the DP.

* b. Each command shall contain transmit, receive and synchronization

data as described herein.

c. The radar shall transmit one pulse for each command which satisfies

the radar and Interface constraints. Within PBMDS, but external to TLS,

there are exceptions for pulse pairs and for verify pulses,

* d. The DPS shall command a single receive window for each pulse.

Within each receive window, the OPS shall conmand at least one receive gate.

3.2.2 Command Ordering

a. Radar shall execute commands In the order received.

* b. The DPS shall provide End of Transmission at least 1 mse, before

the scheduled execution time of the first command In the message.

3.2.3 Command Unpacking and Decoding

* The DPS shall Issue commands In accordance with the format of TBD.

F-37

.i>;
1>^ -.MatmrnMWtoim*^*.^»*™

3.2.4 Timing Control

* a. The comrnanded times for Radar actions or for returns shall be in

absolute time measured from a clock with nominal 1.68 second rollover. The

least significant time bit shall be 6.25 nsec.

b< Radar shall determine all intermediate times needed to comply with

command data for transmission and reception.

* c. The DPS shall not command receive windows which overlap. The

receive window duration in each case shall be at least the uncompressed pulse

length plus the desired range coverage.

d. The DPS shall not command conflicting transmissions. Consecutive

commands shall be separated in execution time by at least the uncompressed

pulse length of the earlier plus TBS.

3.2.5 Command Contents

a. The DPS shall provide a waveform identifier corresponding to one of

the waveforms of Table F.2 (TBD) in each command.

b. The DPS shall provide in each command both transmit and receive codes

corresponding to direction cosine phase tapers.

* 5. The DPS shall provide a receiver gain setting in each receive window.

d. The OPS shall provide a signal processing mode code in each receive

gate.

e. The OPS snail provide a fixed signal acceptance threshold and threshold

type selection for each receive gate.

f. The OPS shall provide the range gate mark generation technique for

each receive gate.

g. The DPS shall provide the transmit power level for each command.

3.2.6 Return Contents

a. Radar shall return identifier data provided in the command.

b. Radar shall return actual range mark times and the signal amplitude

at «ach range mark.

c. Radar shall return video signal amplitudes at commanded points.

Amplitude shall be corrected by the Radar for stored instrumental errors.

F-38

[)

)

:—--r

■Ä

.:...■.:,--.., m^mmmvimmmm^pm ■
,

t

t

t

d. For appropriate commanded signal-processing modes and waveforms,

the Radar shall return direction cosines of the echo. Directional data shall

be corrected by the Radar for stored instrumental errors.

e. For appropriate commands, the Radar shall return TBS wake array data.

f. Radar shall return noise level relevant to each amplitude in a return.

3.2.7 Error Handling

a. Radar shall return an error message for each discernible command not

implemented. That message shall include a code corresponding to the reason

for the failure of transmission. Among the reasons may be preemption, receive

or transmit window overlap, insufficient time for transmission, and faulty

command (internal inconsistency).

* b. The DPS shall initiate a record on permanent file of each error return.

* c. The DPS shall determine whether the fault is persistent or unique;

If persistent, whether it is safety-related. (Definitions TBS). A persistent,

safety-related fault shall cause test termination to bP rommanded by the DPS

within TBS milliseconds; in particular, no command shall be issued for trans-

mission by the Radar more than TBD milliseconds after a persistent, safety-

related fault is detectable from returns.

3.2.8 Mode Change

* The DPS shall control all Radar mode changes through issuance of

appropriate commands. The changes shall include startup and shutdown. Time-

line constraints on mode changes and on preparation time for transmission are TBS.

3.2.9 Timing

a. Radar shall provide a master timing reference to DPS via TCS interface.

b. The clock shall provide 28 bits of data with a least significant bit

of 6.25 nsec.

c. The resetting of the clock shall be entirely under Radar control. In

consequence, its absolute value shall be regarded by the DPS as arbitrary. The

Radar shall reset the clock within TBS milliseconds of startup, and shall not

again reset it during the engagement.

F-39

taamm i ii i iiOTgOi«

ri-rr:

«■W«!*«*^*.**:^^«»'*^;.:^-.,^-..^ v ■ •■w^iVv:. •; -■■,—:;:■ y, »..■■■^i^^^u>^-^CsJ»K,^^::'r••:,'i'^

3.2.10 Miscenaneous Requirements

a. Negative numbers crossing the interface shall be represented in

two's complement form.

b. Radar coordinates shall be defined in accordance with Figure F-9.

3.3 DATA REQUIREMENTS AND FORMATS

TBS

Data requirements and formats have been defined for TDP, and that

definition might be carried over to the present document. Houever, it is

not characteristic of systems such as TLS that details of bit positions,

message formats, etc., would be known at this stage of development. However,

the dynamic range, units, and least significant bit information is necessary

in order to write performance requirements on radar command generation. The

formats identification can be postponed until process design time.

'O

F-40

tfiy,
" ■*w>?.j.i"!|x»|i'qii ' -«r-

-_—- -T — . --- m

■ ■ -.' ■---':■ " ■■■■'t > '

•

^

>

Perpsndicular
to x and z

lorlzontal
(In plane of array)

v ■ 2 ■ cos P
r

Figure F-9 Radar Coordinate System

F-41

aHiie« 'WB i ly/i « ■^w» 11 : ' "I' I ''"'vi '■" !^1" I!'. W.lir ' I .

r
.,:■.■■'■■ -»•,,• :*^ävst«iv;,-;i/<-.vv%.^>>i,m v».,»^^^*'- •

c APPENDIX F-III: CVDPS INTERFACE SPECIFICATION

•

F-43

i

I-
mi,
Sis

1.0 SCOPE

This specification defines the physical and functional interface between

the Command and Communications (C) System and the Data Processing Subsystem

(DPS) of the Track Loop System (TLS). The TLS itself is a testbed derived

from a Preliminary Ballistic Missile Defense System (PBMUS), which is in turn

a representative but unreal environment for these studies. TLS is intended

to have development and test capability, although realization of that

capacity in actual testing is not now contemplated.

This specification correeponds to one which would be available prior to

preparation of a PPR. To that end, it3 contents have been extracted from TDP

documentation. Reference is made to that material as the source from which

data here labeled "TBS" and "TBD" will be derived. In this publication, "TBS"

is used to identify material expected to be required during early stages of

PPR preparation, while "TBD" denotes material which may be supplied- later in

the dpeoification process. Material presented in italics, such as this

paragraph, is illusvrative or infomative in natuxv, atul would not noiwally

appear in such a specification.

Some of the paragraphs in this Interface Specification place constraints

or requirements on the DPS; these J-iave been identified by a * in front of

that paragraph.

%

r-45

l'—-^

•..•

2.0 APPLICABLE DOCUMENTS

2.1 TLS SYSTEM REQUIREMENTS 27332-6921-011, PART I. SECTION 1.1

2.2 TLS DATA PROCESSING SUBSYSTEM PERFORMANCE REQUIREMENTS (DPSPR)

27332-6921-011, PART II

2.3 TLS RADAR/D^S INTERFACE SPECIFICATION

2.4 TLS ENVIRONMENT AND THREAT MODEL DEFINITION

^

F-46

~J.mm,mmm —, m — i „.

*"***f■ '"™^KVS -•r-iS.i-^ ,.....,;, ,.»,»,-:fcT«-;wf ^JJSW^,,

•■■■r ■' • ■ " ;' ' '

•

t

3.0 INTERFACE REQUIREMENTS

3.1 PHYSICAL INTERFACE

TBD

The physical interface between the (r and the DPS is entirely dependent

on hardware selection. It will define polarity conventions, signal levels,

and related parameters of interest only following PDF, and accountable only

from the time of hardware integration. Although this section is required in

euch an interface specification, it will normally remain undetermined throughout

the early stages of software design.

3.2 FUNCTIONAL INTERFACE

The functional interface between the C and the UPS shall consist of
2

messages of four types transmitted from the C to the OPS.

• Initiate Engagement Mode

c Tcrainate Er.gagenent Mode

t Handover Image

• Drop Image Track

3.2.1 Initiate Engagement Mode

* a. The DPS shall accept an Initiate Engagement Mode message from any of

the following prior modes of the DPS: TBD. .

b. The DPS shall be prepared to accept a Handover Image message within

TBS seconds of appearance of the Initiate Engagement Mode message at the

interfa-e.

3.2.2 Terminate Engagement Mode

a. The DPS shall accept a Terminate Engagement Mode message at any

time when it is in Engagement Mode. The DPS shall transition to TBD mode in

response to a Terminate Engagement Mode message.

b. The DPS shall command no Radar transmission with an execution time

more than TBS milliseconds following appearance of a Terminate Engagement Mode

message at the Interface.

F-47

v ■^«^Ä, =3E ~~^**»fmmmmamp.^.mf.ai-

■'■ - ■■ ■ - ■■•■,' !~<-^ ■.'■.,..-..,-„•..,.„.,-,,.,..

3.2.3 Handover Image

a. The contents of the Handover Image message shall be

Image designation

Image estimated state

TBS
2

b. The C shall transmit no Handover Image.message except when the DPS

has been placed In the Engagement Mode by transmission of ah Initiate Engage-

ment Mode message at least TBS milliseconds earlier, and since the last

Terminate Engagement Mode message.

3.2.4 Drop Image Track

a. The contents of the Drop Image Track message shall be the Image

designator.
2

b. The C shall transmit no Drop Image Track message for an Image designator

unless that designator was previously Included In a Handover Image message.

3.2.5 Message Acknowledgement

TBS

3.2.6 Error Handling

TBS

3.3 DATA REQUIREMENTS AND FORMATS

TBD

Data requiremnte and formte have been defined for TDPt and that

definition might be carried over to the'present document. It ia not

oharaoterietio of eyeteme euch ae TLS that details of bit poeition8t meeeage

formatef eto.t would be known at this stage of development. However, tlie

dyrvamia ränget wnite, and leaet eignificant bit information ie neaeeeary

in order to write performance requirements on the radar cormand generation.

The formats identification can be poetponed until process design time.

T

F-48

-,-^— "■•■

■' l--" ■ ■,,•.•..; . ,

f REFERENCES

1.

2.

"Requirements Engineering and Validation System Users Manual", TRW
Report No. 27332-6921-02?, 15 July 1976 (Draft).

"Software Requirements Engineering Methodology," Final Report, TRW
Report No. 27332-6921-019, 12 December 1975.

R-l

Tr—" i—mm mi ii um
m ' !■' " ii i—

